Skocz do zawartości

DanielN

Members
  • Postów

    895
  • Dołączył

  • Ostatnia wizyta

  • Wygrane w rankingu

    90

Aktywność reputacji

  1. Dzięki!
    DanielN otrzymał(a) reputację od Goglez w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    Wpływ tlenku wodoru na piwo
    czyli o wodzie w browarze domowym, bez lania wody
     
     
    Tlenek wodoru, również zwany oksydanem, to nic innego jak woda. H2O jest to najczęściej spotykana cząsteczka wody o niezwykle ciekawych właściwościach. Jakby nie patrzeć, woda jest głównym składnikiem piwa. Mówiąc o wodzie będę miał na myśli wszystko co jest w niej rozpuszczone i zawieszone.
    Woda jest przeceniana przez początkujących adeptów piwowarstwa domowego. Jest również niedoceniana przez wielu zaawansowanych piwowarów. W literaturze spotkasz się lub spotkałeś z opinią, że pozwala robić piwa świetne pod warunkiem, że nauczyłeś się robić piwa dobre. Woda w piwowarstwie używana jest na każdym etapie produkcji. Zauważ, że myjemy cały sprzęt. Niemal zawsze używamy jej jako rozpuszczalnika środków dezynfekujących. Dzięki doskonałym właściwościom cieplnym jest niezastąpiona podczas chłodzenia oraz podgrzewania. Nawet w zacierze proporcja wody do słodu ma znaczenie. Zacier najczęściej trzeba wysłodzić, oczywiście wodą. To woda jest w  końcu głównym składnikiem piwa. Mimo tego, dość mało o niej wiemy.
    W tym artykule chcę zmierzyć się z tematem wody w kontekście naszego hobby.
    Z góry ostrzegam, że będzie trochę wzorów. Jeżeli jeszcze się nie wystraszyłeś to zapraszam.
     
    Dygresja: Zanim zaczniesz modyfikować wodę na potrzeby swoich warek to proszę o chwilę refleksji. Zadaj sobie pytanie: czy opanowałeś czystość? (w kontekście braku infekcji). Drugie pytanie: czy masz warunki i jesteś w stanie przeprowadzić poprawnie fermentację? Jeżeli wahałeś się odpowiedzieć twierdząco na którekolwiek z pytań, to nie ma sensu dostosowywać wody. Woda ma wpływ na smak, ale na tyle subtelny, że każdy błąd fermentacji spowoduje, że nie odczujesz różnicy. Błędy fermentacji je przykryją. Natura i wodociągi tak chciały, że woda z kranu najczęściej się nadaje do warzenia i zrobi dobre piwo. Napisałem najczęściej, bo czasem jest tak, że w piwie goryczka ściąga, na podniebieniu występuje dziwna szorstkość, a słody nie oddają w pełni swojego charakteru. Temu może być winien profil wody. Zapraszam i zachęcam do dalszego czytania, mam nadzieję, że na wodę spojrzysz jako składnik piwa, który coś znaczy.
     
    Artykuł opieram na poniższych źródłach:
    “Water”: A Comprehensive Guide for Brewers, John Palmer, Colin Kaminski, Brewers Publications 2013, ISBN 09-373-8199-3. Chyba jedyne, bardzo dobre, opracowanie na temat wody stricte w kontekście piwowarstwa. Aby zrozumieć niektóre koncepcje w niej przedstawione musiałem posiłkować się pozycjami i artykułami wymienionymi poniżej. “Chemia wody”, Jan R. Dojlido, Arkady 1987, ISBN 83-213-3359-1. Stąd będą pochodzić wzory, budowa cząsteczki wody oraz jej właściwości. Kompendium wiedzy o chemii wody. “How to Brew: Everything you Need to Know to Brew Beer Right the First Time”, John Palmer,30 maja 2006, ISBN 0937381888, pozycji chyba nie trzeba przedstawiać. Część, z której korzystałem można przeczytać on-line tutaj. “Opracowania tematów z chemii”, Praca zbiorowa pod redakcją Witolda Mizerskiego. Grupa Wydawnicza Adamantan s.c. 2017, ISBN 978-83-7350-431-8. Posiłkowałem się rozdziałem o obiegu wody na naszej planecie, wzbogacając go o dodatkowe informacje z [2] oraz [1]. Stanowi też źródło definicji części pojęć chemicznych. Książka mi bardzo pomogła zrozumieć wiele zagadnień chemicznych. https://wiki.piwo.org, kawał dobrej roboty jeżeli chodzi o dostosowywanie składu wody. W artykule również będę poruszał ten temat, ale nie tak obszernie. Nie ma sensu się powtarzać. Prelekcja Johna Palmera ‘Residual Alkanity & Brewing Water’. Jest to w zasadzie śmietanka wzięta z [1]. Artykuł: Understanding Residual Alkalinity & pH pochodzący z Brew Your Own. Pokrywa się z wiki [5], dodatkowo omawia zależność pomiędzy kolorem piwa a alkalicznością. Artykuł jest opublikowany w ramach wolnego dostępu.  
    Nie jestem związany z chemią i temat, z którym się mierzę był mi bardzo trudny. Na szczęście Kantor oraz Tibek wsparli mnie jako recenzenci techniczni. Dodatkowe wsparcie merytoryczne oraz stylistyczne otrzymałem również od żony, jako pierwsze przebiła się przez artykuł wprowadzając niezliczone poprawki. Ostateczny kształt artykuł uzyskał po wprowadzeniu poprawek i uwag otrzymanych od Alert, Oskaliber, Pan Łyżwa i Undeath.
    Nie sposób streścić całą chemię wody na kilku stronach, dlatego musiałem zastosować wiele uproszczeń. Recenzenci spisali się na medal, poprawiali mnie i kierowali ponownie na tory jeżeli gdzieś się myliłem. Po prostu właściwi ludzie na właściwych stanowiskach i to we właściwym czasie!
     
    Przeczytanie artykułu zajmie Ci wieczór a może nawet cztery. Możesz zasnąć, bo zdarza mi się troszeczkę przynudzać. Zaczynajmy.
     
    Przyroda to ‘psotnik’, tak wielki, że trzeba o tym opowiedzieć. Brzmi zagadkowo? Zagadki są po to by je rozwiązywać.
    1. Cykl hydrologiczny
    Cykl hydrologiczny to naukowa nazwa obiegu wody w przyrodzie. Woda na naszej planecie zajmuje większość powierzchni, jest to woda z rozpuszczoną dużą ilością minerałów, mówię oczywiście o wodzie słonej. Woda słodka powstaje w jednym z etapów cyklu hydrologicznego. Początkowo słona woda z mórz i oceanów, ale też lądowa, ogrzewa się i paruje. Słońce dostarcza energii, by proces w ogóle mógł zajść. Parująca woda to nic innego cząsteczki wody w postaci gazowej, myślę że analogia do gigantycznego destylatora jest w tym przypadku na miejscu, ‘psotnik’ się odnalazł. Lotne cząsteczki zostawiły rozpuszczone sole oraz zanieczyszczenia i unoszą się ku górze. Wysoko w atmosferze postać gazowa kondensuje się w wyniku obniżenia temperatury. To zjawisko jest namacalne, to oczywiście chmury. W chmurach woda może przybierać dwa stany skupienia: ciekły w postaci drobinek wody oraz stały jako kryształki lodu. Powierzchnia planety nie ma jednakowego ciśnienia. Różnice ciśnień w różnych obszarach powodują ruch powietrza, czyli wiatr, ten pcha chmury. Część z nich trafi na lądy. Przy odpowiednich warunkach spadnie na ziemię w postaci deszczu lub śniegu, czasem gradu. Po opadzie, woda ponownie paruje powtarzając cykl. Część jednak zdąży wsiąknąć w glebę, zasilić rzeki, jeziora oraz inne cieki wodne. Rzeki z czasem spłyną do morza lub oceanu i ponownie cykl się powtarza. Części wody, jak już wspomniałem, wsiąknie i powiększy zasoby wody podziemnej. W cyklu również dużą rolę odgrywają rośliny i zjawisko transpiracji. Mamy również zmagazynowane duże ilości wody w wiecznie zmarzniętych lodach.
     
    Cykl hydrologiczny przedstawia rysunek:
     

    W ten sposób mamy wodę nadającą się do picia, nawet jeśli źródłem jest słony ocean czy też obszar wodny o znikomym znaczeniu strategicznym, czyli kałuża.
     
    Nasze ujęcia wody pochodzą z wód gruntowych jak rzeki, studni np. oligoceńskich lub głębinowych. Do każdego źródła woda dotarła w nieco inny sposób i pod innymi warunkami. Wody powierzchniowe w krajach rozwiniętych, często są mocno zanieczyszczone przez odpady chemiczne, które wiszą w powietrzu lub osiadają na powierzchni. Podczas opadów woda je rozpuszcza i niesie ze sobą. Oprócz odpadów z atmosfery krople wody rozpuszczą w sobie niewielką ilość dwutlenku węgla. Woda wsiąkając w ziemię rozpuszcza minerały z gleby. Woda, która dociera do głębin przesącza się przez pokłady kredy, gdzie staje się bogatsza w wapń, a dolomity wzbogacają ją również w magnez. Ważną rolę w tym procesie odgrywa dwutlenek węgla i ciśnienie.
    Zakłady uzdatniania wody nie mają lekko. Zanim woda popłynie z kranu musi być do tego przygotowana. Zanieczyszczenia zostaną z niej usunięte, a mineralizacja utrzymana w normach. Większość pracy w tym temacie wykonują duże stacje uzdatniania wody, małe stacje przydomowe, lub jeszcze mniejsze systemy odwróconej osmozy (RO - reverse osmosis).
     
    Masz już pogląd jak to wszystko wygląda. Nie bez przyczyny wymieniłem kilka pierwiastków. W kontekście piwowarstwa będziemy najbardziej zainteresowani kilkoma rozpuszczonymi cząsteczkami/jonami, będzie to dwutlenek węgla CO2, wapń Ca2+ oraz magnez Mg2+. Pominę zanieczyszczenia innymi metalami i związkami - tym zajęły się punkty uzdatniania.
    Wspomniałem o rozpuszczalności, zacznę od wyjaśnienia tego zjawiska. By to zrobić musimy zejść do nieco mniejszego wymiaru. Opowiem trochę o cząsteczce wody [2].
     
    2. Właściwości wody
    Ograniczę się do minimum, jeżeli jesteś bardziej dociekliwy to zapoznaj się z definicją  wody, którą oferuje Wikipedia. Wszystkie rysunki zapożyczyłem z [2]. Świetna książka, z racji wieku niektórzy sensorycy piwni powiedzieliby że się ‘utleniła’. Otóż wcale nie, ciągle jest aktualna i świeża.
     
    Graficznie cząsteczka wody wygląda tak jak na poniższym rysunku.

    Tlen tworzy wiązanie z dwoma atomami wodoru. Jest to solidne wiązanie, ponieważ tlen potrzebuje dwóch elektronów, aby na powłoce walencyjnej miał oktet. Atomy wodoru są oddalone od siebie i usytuowane pod kątem blisko 105°. Atom tlenu zyskuje dwa elektrony, które mają ładunek ujemny. Wodór przekazał elektron i ma ładunek dodatni pochodzący od protonu. Przez niesymetryczną budowę cząsteczka H2O zyskuje moment dipolowy. Wypadkowy ładunek jest równy zeru, ale nierównomierne rozłożenie powoduje, że cząsteczka jest polarna (dipolowa). Można powiedzieć, w uproszczeniu, że przy tlenie jest trochę ujemna a przy wodorze trochę dodatnia. To daje wodzie super właściwości. Cząsteczki wody potrafią łączyć się w większe grupy tzw. asocjacje, chaotyczną sieć połączonych ze sobą cząsteczek sięgającą nawet do 100 sztuk [2]. Przerywane linie to połączone kolejne cząsteczki wody.

    Asocjacje czasem pękają w różnych miejscach pod wpływem sił zewnętrznych. Wtedy mówimy o zjawisku dysocjacji. Czasem wiązanie pęknie tak, że powstają dwa jony. Kation hydroniowy H3O+ oraz anion wodorotlenkowy OH-. Reakcja ta ma zapis: 2H2O ⇔ H3O+ + OH-, jest to dysocjacja. Strzałka skierowana w dwie strony oznacza, że reakcja przebiega w jednocześnie w obie strony. Gdzieś w szklance wody cząsteczki się rozpadają tworząc jony, a w innym miejscu jony łączą się ponownie tworząc wodę. Reakcja ta zachodzi bardzo, bardzo rzadko, ale ma ogromne znaczenie. Wrócę do tego jak będę omawiał pH.
     
     
     
    Jon, jest to atom lub grupa związanych atomów, która posiada ładunek elektryczny. Jeżeli ładunek jonu jest dodatni, to mówimy o kationie. Wtedy atom oddał jeden lub więcej elektronów i stał się przez to naładowany dodatnio. Jeżeli jest to więcej jak jeden elektron, to liczbę zapisuje się w górnym indeksie ze znakiem ‘+’ dla kationów, analogicznie ‘-’ dla anionów. Przykładem jest kation wapnia Ca2+, lub wodoru H+. Jeżeli atom lub grupa przyjęła elektron, wtedy mówimy o anionach, które mają ładunek ujemny. Przykład to wodorotlenek OH- oraz anion węglanowy CO32-.
     
    Dygresja: W rozważaniach, kationami będą metale pochodzące z rozpuszczonych soli, już wymieniony Ca2+, Mg2+ ale też Fe2+. Numer w indeksie górnym to ładunek jonu, w przypadku kationów metalicznych jest równy stopniu utlenienia. Utlenienie to nie jest reakcja związana tylko z tlenem jako pierwiastkiem. Warto zapoznać się z definicją reakcji redoks. W piwie za utlenianie odpowiada nie tylko tlen, ale też szereg procesów w efekcie powodujących jego starzenie w mniej lub bardziej przyjemny sposób.
     
     
     
    Jak to się dzieje, że woda rozpuszcza? Wsypuję łyżkę soli a ta znika. Cóż, są trzy drogi by woda rozpuściła substancję [2]:
    zawiesina - cząsteczki o rozmiarze większym jak 0.5µm są zawieszone w wodzie. Z czasem pod wpływem pewnych sił i warunków, jak temperatura i ciśnienie sedymentują (opadają) na dnie. koloid - rozmiar cząsteczki poniżej 0.5µm, ale większy aniżeli 1nm. Ten stan w odpowiednich warunkach może utrzymywać się permanentnie. W piwach kolodiy najczęściej sedymentują po długim okresie czasu. Nawet piwo pszeniczne wyklaruje się w odpowiednio długim czasie. Chłód przyśpieszy ten proces. Czy Twoje piwo to koloid? Możesz to łatwo sprawdzić wykorzystując efekt Tyndalla (en). roztwór - cząsteczki mniejsze od 1 nm. W tym artykule będę mówił o tym typie rozpuszczenia.  
    Dygresja: Zawiesiny i koloidy są czymś naturalnym w piwie domowym. Są spowodowane przez cząsteczki chmielu, białka, pozlepianych tanin z białkami, czasem skrobi. Zawiesiny i koloidy można odfiltrować mechanicznie lub strącając je chemicznie. Teraz wiesz jakim filtrem mechanicznym musisz się posługiwać, by pozbyć się cząstek zawieszonego chmielu. Dlatego w piwowarstwie domowym filtrują ułożone złoża a nie wielkość oczek w filtrze oraz czas filtracji. Wybierając filtrator ważniejszym parametrem będzie jego powierzchnia wymiany. By znacznie ograniczyć ilość zawiesiny/koloidu lepiej użyj szybkiego schłodzenia, z angielskiego zwanego cold crash (CC). Jeżeli jest to za mało skuteczne, to zawsze możesz użyć żelatyny, zolu krzemionkowego, mchu irlandzkiego, isinglasu.
     
    Rozpuszczalność najczęściej zależy od temperatury i ciśnienia. Wraz ze wzrostem temperatury rozpuszczalność minerałów/soli rośnie, gazów maleje (są wyjątki od tej reguły). W przypadku gdy ciśnienie wzrasta a temperatura spada wtedy rozpuszczalność gazów jest większa.
     
    Sole rozpuszczają się dysocjując. Cząsteczka rozpada się na jony. Następnie woda, dzięki właściwościom polarnym otacza taki jon i utrzymuje go zawieszonego w strukturze. Myślę, że ilustracja powie więcej aniżeli suchy opis. Tak wygląda rozpuszczona cząsteczka soli kuchennej:

     
    Sól kuchenna (NaCl) jest jak najbardziej wykorzystywana do modyfikacji wody w piwowarstwie. Przeciwne ładunki się przyciągają, polarność wody gra tu kluczową rolę. Kation sodu Na+ zostaje otoczony przez cząsteczki wody. Jako, że bliżej tlenu znajduje się ładunek ujemny to cząsteczki ‘obrócą’ się tak, aby wzajemnie się przyciągać. W przypadku anionu chloru Cl- bliżej są kationy wodoru H+. Tak właśnie wygląda rozpuszczanie substancji w roztworze. Zauważ też, że do rozpuszczania jednego jonu potrzeba jest kilku cząsteczek wody. Jest to jeden z powodów, dlaczego różne substancje rozpuszczają się w różnym stopniu.
     
    Co w przypadku takich cząsteczek jak dwutlenek węgla CO2? Jest to cząsteczka liniowa. Do atomu węgla po przeciwnych stronach dołączone są atomy tlenu (cząsteczka dwutlenku węgla jest tak liniowa, że mogę stworzyć jej rysunek w tekście: O=C=O). Nie wykazuje właściwości polarnych. Nie jest to też jon. W tym przypadku woda również sobie poradzi, w mniejszym stopniu, ale zawsze. Dwutlenek węgla zostanie otoczony przez dwie cząsteczki wody [1], które są w stanie utrzymać go w swojej strukturze. Rozpuszczone cząsteczki, w odróżnieniu od wolnych są często zapisywane w postaci CO2(aq) lub CO2*.
    Szereg reakcji chemicznych zachodzących w wodzie jak: utlenienie, hydroliza oraz kwaśna hydroliza [2] umożliwią lub przyspiesza rozpuszczanie. W przypadku hydrolizy woda jest zarówno rozpuszczalnikiem jak i substratem (bierze udział w reakcji). Przykładowo wapno, które jest wypłukiwane z pokładów kredy (CaCO3). Reakcja ma następujący przebieg: CaCO3 + 2H2O ⇔ Ca(OH)2(aq) + H2(CO3)(aq). Czyli dwie cząsteczki wody weszły w reakcję z kredą, wapno zostało uwodnione, powstało wapno gaszone i kwas węglowy. Na dodatek taką chemię pijesz pod ładną nazwą minerałów.
     
    Masz już pojęcie jak sole mineralne oraz gazy rozpuszczają się w wodzie. Ilość oraz rodzaj tych substancji najczęściej odnajdziesz w raporcie wody. W piwowarstwie najważniejszymi elementami raportu są: alkaliczność, wartość pH oraz zawartość wapnia i magnezu. Wapń i magnez występuje głównie w postaci węglanów, siarczanów i chlorków. To wszystko trzeba wyjaśnić i usystematyzować.
    3. Odczyn i skala pH
     
    Wartość pH odgrywa jedną z kluczowych ról podczas zacierania. Zanim podam definicję, chcę powiedzieć czym jest ten współczynnik w ujęciu chemicznym  oraz rolę w procesie warzenia. Jeżeli jesteś niecierpliwy, przeskocz kilka akapitów.
    Wracam do wzoru, który przedstawiłem na początku. Pozwolisz, że przypomnę. W czystej wodzie nieustannie zachodzi reakcja samorzutnego rozpadu cząsteczek. W wyniku tego powstają jony hydroniowe H3O+ oraz wodorotlenkowe OH-. Reakcja jest dwukierunkowa, czyli jony łączą się ze sobą tworząc ponownie cząsteczkę wody. Dzieje się to ciągle i na pewnym poziomie. W szklance herbaty czy też piwa w jednym miejscu cząsteczka się rozpada a w innym jony się łączą budując cząsteczkę wody.
     

     
    Na rysunku wygląda to jakby jon H+, ta jasna szara kuleczka, skakał z jednej cząsteczki do drugiej. Nie jest to błędne myślenie. W rzeczywistości wolne jony H+ w roztworze nie występują, natychmiast tworzy się jon hydroniowy H3O+ albo inny związek. W rozważaniach i wzorach często spotyka się zapis, że woda ulega dysocjacji w uproszczony sposób H2O ⇔ H+ + OH-. Myślę, że w rozważaniach będzie łatwiej posługiwać się tym uproszczeniem. Zatem jak zauważysz we wzorach H+ to w rzeczywistości jest to jon hydroniowy H3O+.
     
    Dysocjacja jonowa jest to reakcja chemiczna i można wyrazić ją za pomocą iloczynu jonowego Kw. Okazuje się, że ta reakcja przebiega na pewnym poziomie równowagi. Można ją zapisać za pomocą liczb.
    Skracam trochę drogę przez mękę i pomijam równanie stałej reakcji. Jeżeli jesteś zainteresowany i chcesz dowiedzieć się więcej to w [2] lub [1] ten temat jest omówiony bardzo szczegółowo, nie chcę przepisywać książek a przedstawić wynik rozważań.
     
     
    Kw=[H+][OH-]
     
    Kw = 1,0 * 10-14 w temperaturze ~25°C
     

     
    W określonych warunkach Kw jest stałe, oznacza to, że balans stężeń poszczególnych jonów musi być zachowany. Jeżeli zaburzysz równowagę jonów, przykładowo dolewając trochę kwasu co wprowadzi jony H+, to stężenie jonów OH- zmniejszy się. Równanie nadal będzie spełnione. Działa to w dwie strony, dodając silną zasadę po pewnym czasie zmniejszy się stężenie jonów [H+]
    W czystej wodzie stężenie jonów [H+] i [OH-] jest takie same. Zatem chcąc policzyć stężenie jednej grupy wystarczy podstawić ją dwukrotnie do wzoru Kw = [H+] * [H+], dalej  [H+] = pierwiastek(Kw) = 1,0 * 10-7. W czystej wodzie tyle samo wyniesie stężenie jonów [OH-].
     
    Dygresja: W czystej wodzie stężenie jonów jest bardzo małe. Uruchom wyobraźnię. W paczce drożdży płynnych Wyeast znajduje się 100 miliardów komórek drożdżowych. Gdyby założyć, że zachowują się tak jak cząsteczki wody, to tylko 10 pojedynczych komórek ‘uległoby dysocjacji’. Jeżeli rozbudziłem ciekawość i chcesz się dowiedzieć więcej zapoznaj się z [2].
     
    Wartość pH zacieru powinna być w granicach 5.2-5.6, bo w tym przedziale wypadkowa pracy enzymów jest najbardziej wydajna. Enzymy również pracują poza tym zakresem, jednak nie są już tak efektywne. Im dalej od optimum tym słabiej pracują. Jako piwowarzy, naszym celem jest stworzenie warunków, aby mogło zachodzić scukrzanie. Pierwszym czynnikiem jest temperatura, przerwy temperaturowe aktywują enzymy. Drugim, ale nie ostatnim, czynnikiem jest pH. Możemy pomóc, stabilizując je na optymalnym poziomie. Zalety optymalnego pH to większa wydajność. Lepsza praca enzymów, mniejsza szansa przedostania się łańcuchów skrobi do piwa. Filtracja może okazać się łatwiejsza na skutek dobrego rozłożenia betaglukanów i cukrów. Dodatkowo w niższym pH przedostanie się znacznie mniej garbników z łuski, to z kolei przełoży się pozytywnie na smak. Zwiększy się odfermentowanie piwa. Odczyn pH również ma wpływ na rozkład protein. Podczas gotowania będzie większy przełom, a to oznacza klarowniejsze piwo. Przy okazji do brzeczki dostanie się więcej związków azotu (FAN) poprawiających fermentację. Poprawi się również stabilność piany. Jednym słowem piwo będzie lepsze.
    Już wiesz na co wpływa pH i czemu warto dbać o jego optymalny poziom. To jest dobry moment na wprowadzenie definicji.
     
     
        Skala pH jest wskaźnikiem ilościowym kwasowości i zasadowości roztworów wodnych. Wartość bazuje na stężeniu jonów wodorowych [H+]
     
     
    Pojęcie pH wprowadził Søren Peder Lauritz Sørensen. Powyższa definicja jest uproszczona, ale w zupełności wystarczająca do celów piwowarskich. Jeżeli chcesz się dowiedzieć więcej to zerknij tutaj albo tutaj.
     
    Wartość pH określa się według poniższego wzoru:
     
     
    pH = -log([H+])
     
     
    Mimo skomplikowanego zapisu jest to bardzo wygodne. Przed chwilą policzyłeś stężenie jonów [H+] i [OH-] w czystej wodzie, wynosi ono 1,0 * 10-7. Liczba jest bardzo mała i niewygodna w zapisie. Podstawiając ją do wzoru na pH otrzymasz 7. Prawda, że wygląda to lepiej?
    Jeżeli w wodzie rozpuścisz silny kwas, na skutek czego będzie wzrastała ilość jonów [H+] a malała [OH-], bo stała reakcji musi być zachowana, to wartość pH zacznie spadać. Na pierwszy rzut oka wydaje się to nielogicznie, coś dodałeś a wartość spadła. Zauważ, że stężenie wyrażone jest jako ujemny wykładnik 10-7 (to samo co zapis 1/107). Zatem jak przybywa jonów wodorowych, to potęga staje się coraz większa, prosta matematyka: 1/107 < 1/103 < 1/10 < 0. Dodatkowo, by pozbyć się minusa został postawiony on przed logarytmem. Ponieważ tak jest wygodniej. Na samym dole skali jest 100, podstawiając do wzoru, pH = -log(100) = 0. W drugą stronę dzieje się tak samo, aż do momentu gdy, nie będzie już jonów H+. Wtedy wartość wynosi dokładnie tyle co Kw, podstawiając do wzoru pH = -log(Kw) = 14.
    Takie są granice skali pH. Im bliżej 0 tym bardziej kwaśny odczyn. Im bliżej 14 tym bardziej zasadowy. Środek skali to odczyn obojętny i wynosi 7.
     
    Zatem pH również określa zależność pomiędzy stężeniami [H+] i [OH-]. Niektóre reakcje chemiczne wymagają, by stężenie jednych jonów było większę. Enzymy scukrzające, czyli amylazy, najlepiej się czują w pH około 5.5. Czyli jony H+ są w większości i biorą udział w reakcjach, które rozcinają długie łańcuchy skrobi.
     
    Dygresja: skala pH nie ma większego zastosowania w przypadku mocno stężonych kwasów i zasad. W domowym piwowarstwie masz jednak szansę spotkać się z tak mocnymi stężeniami w przypadku mycia lub dezynfekcji. Wtedy obowiązkowo rękawice na dłonie oraz okulary ochronne. Roztwór o pH = 0 otrzymasz poprzez rozpuszczenie 1 mola kwasu solnego (HCl) w 1dm3. Roztwór o pH = 14 otrzymasz rozpuszczając 1 mol wodorotlenku sodu (NaOH). Suchy żart chemiczny: NaOH - zasady ponad wszystko.
     
     
     
    Mol jest to jednostka liczności materii używana przez chemików. Spotkałeś się już zapewne z różnymi jednostkami jak tuzin, mendel, kopa, kwadrans. Mol jest to kolejna nazwa, tylko trochę większej wartości, wynosi 6,022140857(74)×1023 (liczba Avogadra). Mówiąc 1 mol kwasu solnego mam na myśli około 6×1023 cząsteczek HCl. Mole są bardzo wygodne w przypadku reakcji chemicznych. Reagując 2 mole wodoru z 1 molem tlenu powstaje 1 mol wody (2H2 + O2 ⇔ 2H2O). Mole na wagę oblicza się również w prosty sposób, używa się do tego tabel z masą molową pierwiastków. Najczęściej spotykane cząsteczki są już skatalogowane. Przykładowo 1 mol wody waży około 18 gramów.
     
     
     
    Skala pH to skala logarytmiczna. Różnica między pH = 4 a pH = 5 to 10 krotna różnica stężeń. Pomiędzy pH = 3 a pH = 6 jest tysiąckrotna. Każdy jeden punkt przyrostu wartości pH powoduje 10 krotną różnicę w stężeniu, przesuwa rząd wielkości o 1. Pomiędzy odczynem neutralnym a skrajnym jest 10 milionowa różnica stężeń.
     
    Dygresja: Zerknij do tego artykułu by dowiedzieć się więcej o logarytmach. Warto, bo dowiesz się takich ciekawostek, że nasze zmysły również działają w oparciu o tę skalę.
     
    Wszędzie tam gdzie jest roztwór wodny można mówić o pH. W przypadku wielu produktów, które nas otaczają i są zbudowane głównie z wody jesteś w stanie wyznaczyć pH. Żywność, elektrolit  baterii, nasze płyny ustrojowe, środki czystości. Nie będę się rozpisywał. Grafika powie o wiele więcej. Piwo można umieścić gdzieś pomiędzy octem a mlekiem.
     


     
    Wartość pH jest ważna. Pozwala stwierdzić jak i czy w ogóle enzymy pracują. Jednakże miej na uwadze, że jest to wskaźnik, który wynika z szeregu reakcji chemicznych. W piwie są to reakcje, na skutek których pH ciągle maleje, od samego początku procesu przygotowywania piwa. Żeby nie było tak łatwo, są również reakcje, które temu przeciwdziałają. Czas wprowadzić najważniejszy parametr wody w naszym hobby, czyli alkaliczność.
     
    4. Alkaliczność z punktu widzenia piwowara
    Alkaliczność (zasadowość) wody, jest to właściwość określająca zdolność do zobojętniania kwasów. Alkaliczność jest tym większa, im więcej rozpuszczonych jest w wodzie węglanów i wodorowęglanów.  Kolejny raz przedstawiłem uproszczoną definicję, tutaj masz szczegółową. Uwaga: alkaliczność nie zależy od współczynnika pH odczytanego z raportu wody, za chwilę to wyjaśnię.
     
    Z punktu widzenia piwowara alkaliczność możesz traktować jako opór brzeczki przed przed zmianą pH. Zauważ, że napisałem brzeczki, a nie samej wody, bo również słód w pewnym zakresie ma wpływ na spadek pH poprzez swoje właściwości buforujące.
    Alkaliczność możesz sobie wyobrazić jako gąbkę do mycia. Jest w stanie wchłaniać płyn, ale tylko do pewnego momentu. Im większa gąbka tym więcej jest w stanie wchłonąć. Po przekroczeniu pewnej objętości nie jest w stanie przyjąć nawet pojedynczej kropli. W tej analogii płyn traktuj jako jony H+ a gąbka to węglany wiążące te jony.
     
     
     
    Podczas zacierania, pH zacieru spada, staje się on coraz bardziej kwaśny. Dzieje się to głównie na skutek reakcji fosforanów zawartych w słodzie z wapniem. Fosforany stanowią około 1% wagi słodu. Jest ich bardzo dużo w stosunku do wapnia. Spadek pH będzie możliwy do momentu, aż nie zabraknie wapnia. Reakcja jest jednokierunkowa i wygląda tak:
    10Ca2+ + 12HCO3- + 6H2PO4-1 + 2H2O → Ca10(PO4)6(OH)2 + 12CO2 + 12H2O + 2H+
    Fosforany H2PO4-1 reagują z rozpuszczonym wapniem Ca2+ i wodorowęglanami HCO3 , efektem jest hydroksyapatyt, który się strąci i osiądzie, dwutlenek węgla, woda oraz kationy H+ powodujące spadek pH podczas zacierania. Ta reakcja pochłania wapń w pierwszych kilkunastu minutach zacierania [1]. To jest główny powód, dla którego warto poczekać z pomiarem pH około 15 minut.
     
     
     
    Mówiąc o alkaliczności wody, tak naprawdę mówimy o dwutlenku węgla rozpuszczonym w wodzie. Dwutlenek węgla dostał się do wody na kilka sposobów m.in. z atmosfery. Rośliny podczas oddychania również wytwarzają dużo CO2. Jest też odzyskiwany z minerałów zawierających węglany, przez które woda się sączy. Rozpuszczalność dwutlenku węgla jest stosunkowo mała i zależy od temperatury oraz ciśnienia. W temperaturze pokojowej w jednym litrze wody rozpuszczone jest około 0.5mg CO2. Obniżając temperaturę do bliskiej 0 - dwutlenku węgla rozpuści się dwukrotnie więcej. Wody głębinowe, gdzie panuje większe ciśnienie i niższa temperatura mają w sobie rozpuszczone dużo więcej dwutlenku węgla aniżeli wody powierzchniowe.
    Dwutlenek węgla w wodzie może występować w postaci rozpuszczonej CO2(aq). Albo być uwięziony w węglanach. Niewielka część rozpuszczonego dwutlenku reagując z wodą tworzy kwas węglowy H2O + CO2(aq) ⇔ H2CO3. Jest to słaby kwas i dysocjuje (rozpada się na jony w roztworze wodnym) w dwóch reakcjach.
    H2CO3 ⇔ HCO3− + H+, kwas węglowy rozpada się na wodorowęglan oraz kation hydroniowy
    HCO3− ⇔ CO32− + H+, wodorowęglan rozpada się na węglan oraz kolejny kation hydroniowy.
     
    Kwas węglowy i sposób w jaki się rozpada daje możliwość rozpuszczenia się w wodzie wapnia oraz magnezu. Gdy woda sączy się przez pokłady wapnia, kwas węglowy w niej zawarty dysocjuje oddając węglany. Te chętnie wiążą się z wapniem. Powstaje węglan wapnia CaCO3 (CaCO3 ⇔ Ca2++ CO32-). Płynąc przez dolomity, oprócz wapnia zyska również magnez. Pod ziemią, gdzie panuje większe ciśnienie, rozpuszczone jest więcej dwutlenku węgla i minerałów. Wszystkie węglany rozpuszczone w wodzie składają się na alkaliczność.
     
    Reakcje chemiczne mają to do siebie, że przebiegają na pewnym poziomie i w równowadze. Wapń zawłaszczył sobie cześć węglanów. Zatem reakcje będą dążyły do równowagi. Zwolni się trochę miejsca, powstanie nowy kwas węglowy. I znowu zostanie wypłukane trochę wapnia w postaci CaCO3. Po pewnym czasie reakcję znajdą punkt równowagi. Powyżej przedstawiłem uproszczony cykl węglanowy. Sekwencja reakcji chemicznych dążąca do równowagi. Rysunkowo można przedstawić to tak [1]:
     

    Układ będzie zawsze dążył do równowagi, oznacza to że ilość rozpuszczonego dwutlenku węgla musi być w harmonii z wszystkimi postaciami. Jeżeli zburzysz układ, przykładowo podnosząc temperaturę, co zmniejszy ilość CO2, to z czasem wytrąci się osad w postaci węglanu wapnia CaCO3. Jeżeli dodasz trochę węglanu wapnia CaCO3 oraz podniesiesz ciśnienie CO2, to węglan wapnia rozpuści się o wiele szybciej. Te reakcje nie dzieją się momentalnie, potrzebują czasu. Co więcej skutek widzisz codziennie. Kamień na słuchawce prysznica, kranie, sedesie, powstaje na skutek nagłego obniżenia ciśnienia wody. Rozpuszczalność dwutlenku węgla spada i układ węglanowy dążąc do równowagi wytrąca węglan wapnia. Sytuacja analogiczna dzieje się w czajniku elektrycznym, tam na skutek zmiany temperatury. Gospodyni domowa radzi: użyj octu to kamień nie będzie problemem.
     
    Jeszcze jedna uwaga. Postać węglanów zależna jest od pH i wygląda tak [1]:

     
    W zakresie pH zacierania, czyli pomiędzy 5.2 - 5.6 głównie będzie występował pod postacią kwasu węglowego. Stała pK1 wyznacza równowagę między kwasem węglowym a wodorowęglanami, pK2 jest to stała równowagi między węglanami a wodorowęglanami. W wodzie z kranu, gdzie pH najczęściej jest powyżej 7 dominującą postacią jest wodorowęglan.
     
    Na skutek reakcji wapnia z fosforanami, pH brzeczki spada. Układ węglanowy przesunął się w kierunku postaci kwasu węglowego. Pytanie jak to się ma do alkaliczności i tego oporu przed zmianą pH. Do sedna sprawy. Układ węglanowy to reakcje, które działają jak bufor. Bufor wiąże kationy H+, tym samym zapobiega zmianie pH. Oczywiście jest to w stanie zrobić tylko do swojej pojemności, później pH nadal będzie spadało. W brzeczce na skutek ciągłego obniżania pH pojemność tego bufora będzie przekroczona. Jednakże mimo przepełnienia zwiąże część jonów H+ i pH nie spadnie tak mocno. Cała sztuka to tak dobrać alkaliczność wody, by pH zatrzymało się w przedziale optimum zacierania. Druga zmienna tego układu równań, to odpowiednia ilość wapnia.
    W przypadku zacierania buforuje następująca reakcja: HCO3- + H+ ⇔ H2CO3. Wodorowęglany wchodzą w reakcję z kationami H+ pochodzącymi głównie z reakcji fosforanów z wapniem, powstrzymując spadek pH, do momentu aż są wodorowęglany wyczerpią.
     
     
    Bufor na przykładzie: dolewam trochę silnego kwasu do wody alkalicznej, bogatej w węglany. Okazuje się, że woda nie zmienia pH, bo węglany wyłapują i wiążą jony H+. Trwa to oczywiście do pewnego momentu, aż bufor się przepełni. Wtedy pH zacznie spadać w tempie dostarczania jonów H+. Na tej zasadzie działają testy kropelkowe, o których opowiem już niedługo w rozdziale o pomiarach wody. Im więcej węglanów w wodzie tym większe właściwości buforujące. Im większe wartości buforujące tym większy opór przed zmianą pH. W praktyce oznacza to, że jeżeli wybierzesz wodę bardzo alkaliczną i zrobisz lekkie jasne piwo, to może okazać się, że pH jest dalekie od optimum. Enzymy będą pracowały o wiele gorzej, zacieranie będzie trwało długo i może zabraknąć im wapnia przez co nie skończą pracy. Zostanie sporo skrobi. W skrajnych przypadkach może się nie udać kompletnie. Podobnie w przypadku wybrania wody mało alkalicznej i warzenia piwa z dużą ilością ciemnych i karmelowych słodów. Kwas zawarty w słodach pochodzi głównie z reakcji Maillarda i dodatkowo obniża pH. To oznacza, że pH zacieru może spaść za nisko i ponownie enzymy będą miały problemy z pracą.
     
     
     
    Dygresja: Odzyskanie równowagi w cyklu węglanowym może zająć trochę czasu. Większość tych reakcji nie jest demonem prędkości. Dlatego modyfikacje wody, zwłaszcza gdzie używane są węglany warto przeprowadzać kilka godzin przed warzeniem. Będzie to miało jeszcze jedną zaletę. W przypadku gdy Twoja woda jest dezynfekowana związkami chloru, to w kilka godzin większość chloru zleci i piwo będzie lepsze.
     
    W praktyce, policzenie powyższego jest żmudne i łatwo o pomyłkę. Na ratunek przychodzi Paul Kolbach, dokonał on pewnego odkrycia, znalazł pewną zależność.
    5. Twardość wody
    Zanim przejdę od odkrycia Kolbacha, muszę powiedzieć czym jest twardość wody. Będzie potrzebna, aby policzyć ilość wapnia i magnezu w wodzie. Alkaliczność to głównie kompleksy węglanów z wapniem i magnezem (CaCO3, MgCO3). W wodzie oprócz węglanów rozpuszczone są sole mineralne. Najważniejsze w piwowarstwie to oczywiście sole wapnia i magnezu. Najczęściej w postaci siarczanu wapnia CaSO4 inaczej gipsu, chlorku wapnia CaCl2, siarczanu magnezu MgSO4 oraz chlorku magnezu MgCl2. Stężenie wapnia jest najczęściej 4-5 krotnie większe od stężenia magnezu. W wodzie pitnej występują również inne sole. Jednakże jest ich dużo mniej w porównaniu do wyżej wymienionych.
     
    Cała potrzebna teoria już jest, czas ubrać to w definicję:
     

       Twardość wody jest to suma stężeń kationów wapnia [Ca2+] i magnezu [Mg2+].
     
     
    Twardość wody można podzielić na:
    węglanową/przemijającą - w tym przypadku wapń i magnez związany jest z węglanami (CaCO3, MgCO3). Twardość tą łatwo zmniejszyć, chociażby poprzez przegotowanie wody. niewęglanową/trwałą - są to pozostałe sole, z którymi związał się wapń i magnez . Będą to głównie chlorki i siarczany (CaSO4, CaCl2, MgSO4, MgCl2), ale też zdecydowanie mniej liczne azotany i fluorki.  
    Twardość węglanowa to nie to samo co alkaliczność. Twardość liczy stężenia wapnia i magnezu, alkaliczność zajmuje się węglanami. W rachunkach współdzielą te same związki czyli węglan wapnia i magnezu, ale parametr twardości bierze pod uwagę kationy Ca2+  i Mg2+, natomiast  alkaliczność anjony CO32- reagujące z kationami [H+].
     
    Dygresja: Zakłady uzdatniania wody dbają o nasze zdrowie jako populacji, nie koniecznie o kondycję drożdży w Twoim fermentorze. To co pijemy z kranów ma związki, które są bezpieczne i potrzebne ludziom. Zatem nie uświadczysz takich soli jak chlorek cynku ZnCl2, który jest potrzebny drożdżom. Warto, abyś dodał trochę pożywki piwowarskiej, przynajmniej do startera, która zawiera cynk. Cynk jest potrzebny drożdżom do namnażania. Masz już kilka warek na koncie? opanowałeś warsztat, ale problemy z długim startem drożdży? Spróbuj dodać pożywki z cynkiem, może pomóc.
     
    6. Alkaliczność rezydualna RA
    Badania i eksperymenty Kolbacha doprowadziły do wyznaczenia zależności pomiędzy alkalicznością oraz reakcjami z wapniem i magnezem podczas zacierania. Odkrycie wskazało, że wapń oraz magnez powoduje obniżenie jej alkaliczności w przewidywalny, zatem obliczalny, sposób. W przypadku wapnia 3.5 jednostki tego metalu obniża alkaliczność o 1. W przypadku magnezu, aby obniżyć alkaliczność o 1 potrzeba aż 7 jednostek. Na tej podstawie można zapisać już wzór [1] alkaliczności rezydualnej RA. Jest to alkaliczność z którą trzeba się zmierzyć. Czyli tak dobrać parametry wody, by pH zacieru zatrzymało się w optimum.
     
     
    mEq/L RA = mEq/L Alkaliczność- (mEq/L Ca/3.5 + mEq/L Mg/7)
     
     
     
     
    W powyższym wzorze występue jednostka mEq/L są to miliekwiwalenty. W naszych raportach wody częściej spotykana konkretna jednostka ppm (mg/l) jako CaCO3.
    Porównanie jakichkolwiek wartości ma sens, jeżeli są w tej samej skali/jednostkach. Waga 10 kilogramów, to nie to samo co 10 funtów. Prędkość 10 metrów na minutę, nie jest taka sama jak 10 mil na godzinę. Trzeba te wartości znormalizować, sprowadzić do wspólnej jednostki, albo wyrazić jedną jako drugą. Można też znaleźć wspólny punkt odniesienia. Tym właśnie jest mEq/L. Jeżeli chodzi o alkaliczność oraz stężenia jonowe, to wygodnie jest posługiwać się wagami, bo wiadomo ile tego dodać, bez zbędnego przeliczania moli na wagę. Waga wyrażona jako ppm lub inaczej mg/l jest chyba najczęściej stosowana w przypadku roztworów wodnych. Aby było ciekawiej, w przypadku alkaliczności przelicza się ją jako CaCO3 i ma to sens. Chodzi o ilość substancji, która przereaguje. Alkaliczność jest to opór przed zmianą pH, ale można na nią spojrzeć trochę inaczej. Alkaliczność pochłania jony H+ do momentu, aż nie jest w stanie ich więcej przyjąć. Po przepełnieniu pH spada. Jony H+ to nic innego jak kwas. Ustalam punkt odniesienia powiedzmy pH = 4.5 i dodaję kwas powoli, aż osiągnę ten wynik. Wyszło mi X miligramów tego kwasu. Gdybym użył innego kwasu to wyszłoby Y miligramów, nadal brak jednoznaczności. Dlatego potrzebny jest kolejny krok, punkt odniesienia. Mając ilość tego kwasu mogę teraz policzyć ile minimalnie miligramów CaCO3 potrzeba, aby ta sama ilość kwasu przereagowała calkowicie z węglanem wapnia. Nieważne, który kwas wybiorę, ilość CaCO3 wyjdzie taka sama. Ta minimalna ilość, to jest właśnie odpowiednik alkaliczności wyrażonej w ppm (mg/l) jako CaCO3. Pozostaje jeszcze wapń i magnez. Są w postaci stężeń. Trzeba je przeliczyć na mg/L. Tabele chemiczne w rękę i sprawdzam ile waży pierwiastek Ca a ile Mg. Na podstawie stężeń i wagi pierwiastka można obliczyć całkowitą wagę. Ostatecznie mam taką formułę:
     
     
    RA = Alkaliczność -  (Ca/1.4 + Mg/1.7)
     
     
    Rezydualna alkaliczność (RA) oraz alkaliczność, wyrażona jest w ppm jako CaCO3, wapń oraz magnez w ppm. Teraz już można posługiwać się wygodnymi wagami.
     
     
    Przykład. Raport wody wymienia: wapń Ca = 70 ppm, magnez Mg = 14 ppm, alkaliczność = 80 ppm jako CaCO3. Ze wzoru wychodzi RA = 80 - (70/1.4 + 14/1.7) ~= 28. Wartość 28 jest to alkaliczność rezydualna, z którą musisz się zmierzyć modyfikując wodę lub też dobierając odpowiedni styl piwa. O tym za chwilę.
    Jeżeli woda będzie mało alkaliczna, czyli zawiera mało węglanów, natomiast zawartość siarczanów i chlorków będzie podwyższona, to RA może spaść poniżej 0. Jest to jak najbardziej poprawny wynik.
    Zanim przejdę do modyfikacji wody muszę opowiedzieć jeszcze o wpływie słodu na alkaliczność oraz o współczynniku ilości wody do słodu w kotle zaciernym. Badania Kolbacha uzupełnili Troester, Bies oraz A.J. deLange. Aby wiedzieć, kto miał jakie zasługi to proszę zapoznaj się z [1], w tym artykule przedstawię tylko wyniki badań. Pierwszym wynikiem eksperymentów było odkrycie, że stosunek zasypu do ilości słodu, ma wpływ na alkaliczność rezydualną.

     
    RA będzie większe w zacierze gęstszym. Tabela przedstawia wartość RA dla słodu pilzneńskiego i monachijskiego. Każdy wiersz to gęstość zacieru od 2 litrów do 5 litrów na kilogram. Robiłeś kiedyś RISa? Na 100%, by mieć większy ekstrakt robiłeś gęstszy zacier. Tym samym również miałeś większe RA. W tym stylu jest to bardzo dobre, ponieważ duża ilość kwasów z ciemnych słodów została zobojętniona i pH nie spadnie za nisko. W drugą stronę. Jakbyś zrobił bardzo gęsty zacier i super jasne piwo, wtedy pH może stabilizować się ponad optimum. Przy zasypie 3:1 - 4:1 nie ma spektakularnej zmiany RA. Co więcej taki współczynnik również jest bardziej optymalny dla amylaz (rozpuszczalność cukrów jest lepsza w rzadszym zacierze). W przypadku jeżeli zacierasz w kociołku automatycznym, na skutek mocnego rozrzedzania wpływ na RA będzie mniejszy.
     
    Gęstość zacieru pozwoliła wyciągnąć wnioski i zapewne przynieść duże oszczędności dużym graczom. Przyszedł czas na taki szczegół jak grubość śruty wpływa na właściwości buforujące. Nie ma już tak spektakularnych wyników, ale można zauważyć, że bardzo drobno ześrutowany/sproszkowany/mączny (pulverized) słód bardziej podnosi RA aniżeli śrutowanie grube. Przyjrzyj się poniższej tabeli.

    Ponownie słód pilzneński i monachijski. Szczelina śrutownika od mąki/proszku do 1.2 mm. Zatem bardzo drobna śruta nieco więcej podnosi RA. Znowu duzi gracze oszczędzają. My piwowarzy, może mali co do skali ale wielcy co do jakości, możemy również zaoszczędzić. Masz śrutownik? - zacznij śrutować trochę drobniej, ale nie przesadź na tyle, że zatrzyma Ci filtrację. Będzie większa ekstrakcja i trochę większe RA, co jest dobre w przypadku ciemniejszych piw.
     
    Przyszedł czas na kolejne badanie. Jak rodzaj/typ słodu wpływa na kwasowość/zasadowość zacieru. Przyjrzyj się tabeli.
     

     
    Dokładną analizę tabeli poznasz w [1]. Skupię się tylko na dwóch kolumnach. Zerknij w kolumnę pH oraz koloru. Zauważ relację, im ciemniejszy słód, tym pH było niższe. Można też powiedzieć, im ciemniejszy słód tym większego RA wymaga, by pH nie spadło za nisko. Wnioskiem z eksperymentu jest to, że piwa z dużą ilością słodów ciemnych i karmelowych muszą mieć wodę bardziej alkaliczną. Inaczej pH może spaść za nisko i efektywność zacierania będzie mniejsza. W przypadku piw jasnych woda powinna być mniej alkaliczna.
     
    Zadaniem piwowara jest dobranie tak alkaliczności wody oraz głównie wapnia, mniej magnezu, aby pH zatrzymało się na oczekiwanym poziomie, pomiędzy 5.2 a 5.6. Alkaliczność oraz ilość wapnia jest powiązana ze sobą przez równanie rezydualnej alkaliczności RA. Rodzi się pytanie, czy nie da się tego wszystkiego jakoś powiązać? Otóż da się, za pomocą koloru piwa. Nie jest to żart. Im ciemniejszy kolor tym więcej kwasowości pochodzących ze słodu. Nie trzeba przeliczać proporcji słodów ciemnych/specjalnych/karmelowych. Wystarczy docelowy kolor piwa by zobaczyć jakiej alkaliczności rezydualnej potrzeba. Formuła która łączy to wszystko:
     
     
    SRM = 0.14 * RA (jako CaCO3) + 5.2
     
     
    Pełne złote a skromne, chyba że ciemne, ale też skromne. Kolor piwa powiązany jest z alkalicznością rezydualną, prawda że piękne?
     
    Przykład, aby lepiej zrozumieć. Załóżmy, że z wyliczeń, bez żadnych modyfikacji wody, wyszło RA  = -10 jako CaCO3. Podstawiasz do równania: SRM = 0.14 * -10 + 5.2 = 3.8. Około tego koloru mieszą się piwa pszeniczne, belgijskie, PA i IPA. Poszukaj w Internecie tabel, które wymieniają style piwa pogrupowane po SRM i zobacz jakie piwa możesz warzyć bez modyfikacji wody. Wcale bym się nie zdziwił, że są to piwa, które Ci smakują i zawsze wychodzą najlepiej. W moim przypadku, gdzie RA mam wysokie, wchodzą w grę piwa o kolorze ciemny bursztyn oraz brązowe. Faktycznie, jak robiłem dunkelweizen oraz szkota, to pH trafiło w optimum.
    Żeby nie było za łatwo. Kolor piwa trudno ‘trafić’, do tego potrzeba trochę praktyki i doświadczenia. Nawet jeśli kalkulator podał konkretną wartość, nie zawsze taki kolor wyjdzie. Są różne słodownie, różne partie słodu. Słody ciemne mają szeroki zakres widełek koloru podawanego przez producenta. Dlatego nie męcz się z trafieniem koloru w punkt, zawsze możesz dokonać małej korekty kwasem. Przy małej odchyłce uzyskanego koloru od zamierzonego i tak najczęściej trafisz w optymalny przedział pH.
     
    Wartość RA łatwo wyznaczyć posługując się nomogramem zaproponowanym przez Johna Palmera w Książce How To Brew [3]. Zamiast liczyć, można rysować. Nomogram również pomoże w doborze koloru piwa i modyfikacji wody pod konkretny kolor.
     
    Bezpośredni link do nomogramu (PDF). Drukuj bez dostosowania lub w skali, bo inaczej może nie wyjść. Wygląda to tak:
     

     
    Kilka słów wyjaśnień. Wszystkie wartości, które otrzymasz musisz przeliczyć na odpowiednik CaCO3 (wyjątek alkaliczność, która może być jako HCO3). Kolorem jasno niebieskim są oznaczone widełki, jakie woda przeznaczona do warzenia powinna mieć. Są to wartości zalecane, nie obligatoryjne. Przykładowo historyczna woda pilzneńska wg literatury ma około 10 ppm wapnia i piwa jakoś wychodzą. Obecnie przy warzeniu pilsa dobre browary biorą poprawkę ze względu na jakość współczesnych słodów.
    Pokaże na przykładzie: Raport wody w jednostkach przeliczonych na ppm jako CaCO3 wygląda tak: wapń: 70, magnez: 15, całkowita alkaliczność: 48.
    Oznaczam wapń, magnez oraz alkaliczności na odpowiednich osiach nomogramu. Następnie rysuję linię od punktu wapnia do magnezu. Linia ta przetnie linię efektywnej twardości wody, punkt przecięcia uwzględnia już wpływ wapnia i magnezu. Rysuję kolejną linię od punktu przecięcia poprzez punk całkowitej alkaliczności. W efekcie przeciąłem linię RA i tym samym wyznaczyłem jej wartość. Na górze ponad wartością masz orientacyjne kolory piwa, które pasują do RA. Tak wygląda to w praktyce:
     

     
    Linia niebieska przecina wartość magnezu oraz wapnia odczytane z raportu wody, lub zmierzone testami. Prowadzę linię zieloną od punktu przecięcia efektywnej twardości poprzez całkowitą alkaliczność aż do przecięcia osi RA. Spoglądam w górę nad punktem i widzę, że optymalnie będzie jasne piwa do delikatnie bursztynowych. Mogę też wartość RA podstawić do wzoru SRM i mieć konkretną wartość. Jeżeli zechcę uwarzyć piwo ciemniejsze, to mogę do wody dodać kredy. Wtedy wzrośnie mi alkaliczność wody oraz ilość wapnia. O ile? Cóż mogę to obliczyć (rozwiązanie dla nerdów), zmierzyć po fakcie (rozwiązanie dla hazardzistów). Wystartować od zera, czyli użyć wody destylowanej lub RO. Mogę też posłużyć się pomiarem przed dodaniem czegokolwiek a następnie kalkulatorem. Jeżeli masz dokładny raport wody, to może on zastąpić pomiar.
    Podsumowując, formuła: SRM = 0.14 * RA (jako CaCO3) + 5.2 łączy w sobie wiele procesów chemicznych zachodzących podczas warzenia z kolorem piwa. Jeżeli wyznaczysz alkaliczność rezydualną, to będziesz widział w jaki kolor piwa celować, by pH zacieru było bliskie optimum. Trudnością jest trafienie z kolorem, ale w tym pomaga praktyka oraz większość programów do układania receptur. Warzenie piwa w jednym kolorze, mimo że dobrego, szybko się znudzi. Czas zacząć modyfikować wodę, by warzyć dowolne piwo i trzymać pH zacieru w optimum.
     
    7. Modyfikacja wody
     
    Dostosowanie składu wody nie jest trudne. Podstawiasz dane w kalkulatorze i masz wyniki. Mówię jak najbardziej serio. Zachęcam do korzystania z kalkulatora online lub wbudowanego w Twój ulubiony program.
     
    Jeżeli jednak chcesz poznać, co znajduje się pod maską kalkulatorów, to zapraszam do dalszego czytania. Już wspominałem, że w naturze trudno jest spotkać wolne atomy. Raczej są to cząsteczki. Dodając je do wody dysocjują i rozpuszczają się. Do wody dodajemy sole mineralne aby podnieść poziomy wybranych jonów. Po dodaniu, nie można już ich usunąć w prosty sposób. Dlatego woda przygotowywana jest w dwóch etapach - mówię ciągle o piwowarstwie domowym. Na wstępie jest zmiękczana, spada twardość i alkaliczność do takiego poziomu, z którego za pomocą minerałów można zbudować pożądany profil. Żeby było trudniej, najczęściej wodę do zacierania traktuje się inaczej jak tą do wysładzania. Woda, którą będziesz wysładzał powinna być odpowiednio miękka, mało alkaliczna i najlepiej jakby potraktować ją kwasem aby obniżyć pH do poziomu około 5.5. Taki odczyn nie będzie płukał garbników. Jeżeli woda do wysładzania będzie mocno alkaliczna i będzie zawierała dużo wapna i miała wysokie pH, to nie dość, że wypłukasz sporo garbników, które powodują szorstkość odbioru piwa i ściąganie w ustach, to do piwa przedostanie się dużo wapnia. Ten może powodować mętność piwa, w skrajnych przypadkach gushing (tworzy małe kryształki ze szczawianami, super nukleatory pozwalające CO2 szybko przejść z postaci rozpuszczonej do lotnej). Dodatkowo bufor mocno alkalicznej wody będzie zapobiegał dalszemu spadkowi pH, to podnosi trochę ryzyko infekcji. Niższe pH jest środowiskiem mniej przyjaznym mikrobom.
     
    Wstępne przygotowanie wody
    Najłatwiej i najrozsądniej zacząć od zera, czyli użyć wody pozbawionej soli. Możesz taką kupić w sklepie jako wodę demineralizowaną lub zakupić system RO. Z tego podejścia korzysta Tibek. Używa małego systemu odwróconej osmozy RO3. Woda z takiego systemu jest porównywalna z destylowaną. Czysta woda, czy to z RO, czy też demineralizowana zakupiona w sklepie wymaga dodania wszystkich potrzebnych soli.
    Niewątpliwą zaletą tego podejścia jest start, od tego samego poziomu, czyli od zera. Nie martwisz się raportami wody. Jednakże nie ma róży bez kolców. Na wstępie trzeba trochę wydać. Zakup systemu RO, to wydatek przynajmniej 150 zł (z kosztami przesyłki, oraz potrzebnymi przyłączami). Potem dochodzi wymiana filtrów, raz na pół roku. Co kilka lat trzeba wymienić membranę. Jeżeli zamierzasz modyfikować wodę i warzysz 10 standardowych warek w roku, to po około 2 latach RO będzie bardziej opłacalne jak kupowanie najtańszej wody demineralizowanej. Oprócz aspektu finansowego jest również wygoda, a to przemawia za RO. Myślę, że jak zapytacie tibka to podpowie i doradzi co kupić.
     
    Dygresja: Jeżeli zdecydujesz się na zakup systemu RO (reverse osmosis, odwrócona osmoza) to zwracaj uwagę na współczynnik GPD. Zerknij tutaj aby dowiedzieć się więcej i policzyć czy Ci się to opłaca. Do celów piwowarskich wystarczy system RO3 75GPD. W zależności od ciśnienia w instalacji wodnej wytworzy około 3-4 litrów czystej wody na godzinę. Tanie systemy RO używają ciśnienia sieci wodnej do podtrzymywania zjawiska. Oznacza to, że na każdy wyprodukowany litr wody czystej zużyją kilka litrów wody, traktowanej jako odpad. Mimo tego koszt wyprodukowania wody przez system RO jest tańszy jak zakup w hipermarkecie.
     
    Drugim sposobem wstępnego przygotowania wody jest gotowanie. Gotowanie pozwala pozbyć się alkaliczności przemijającej. Wysoka temperatura redukuje ilość rozpuszczonego dwutlenku węgla. To zaburza równowagę układu węglanowego. Odczyn pH wody podnosi się a część węglanów strąca się jako osad sedymentując na dnie. Po przegotowaniu, wodę należy ostudzić i zdekantować, pozostawiając osad na dnie. Kosztem czasu i energii masz bardziej miękką wodę. Z tym podejściem wiąże się jeszcze jeden problem. Jak określić spadek twardości i alkaliczność? Możesz posiłkować się tabelą i próbować szacować.

     
    Z bardzo małej praktyki powiem Ci, że gotowanie wody jest uciążliwe. Trwa długo, trzeba potem delikatnie odbierać do kolejnego naczynia. Za to niewątpliwą zaletą jest bardzo szybkie pozbycie się chloru i jego lotnych związków podczas gotowania.
    Po przegotowaniu, zamiast szacować można również sprawdzić parametry. W tym celu najlepiej udać się do sklepu zoologicznego i kupić kropelkowe testy wody. Będziesz potrzebować dwóch. Pierwszy, to test KH-GH a drugi to Ca-Mg. Test KH mierzy twardość węglanową, test GH całkowitą. Test Ca wyznacza ilość wapnia, Mg magnezu. Testy te najczęściej podają wynik w stopniach niemieckich (°d). Trzeba je przeliczyć na mg/l jako CaCO3. Przeczylicznik jest prosty, wynik mnożysz przez 17.8.
    Testy kropelkowe działają na zasadzie liczenia kropli dodawanych do wody. Opiszę to na przykładzie testu KH. Woda, jak już wcześniej powiedziałem, to środowisko buforujące. Opiera się przed zmianą pH do momentu, aż bufor się przepełni. Dodając powoli kropelki testera zmniejszasz pojemność bufora. Liczysz kropla po kropli delikatnie mieszając. W pewnym momencie bufor się przepełni i ta ostatnia kropla zmieni kolor roztworu. Ilość dodanych kropli, to wynik w stopniach niemieckich. Załóżmy, że dodałem 5 kropli i woda się zabarwiła. Następnie mnożąc wynik przez 17.8 otrzymując wynik około 90. Jest to całkowita alkaliczność wyrażona w ppm jako CaCO3 (mg/l jako CaCO3).
    Testy kropelkowe w zależności od producenta i Twojej wody wystarczą na 10-20 pomiarów. Przy przechowywaniu ich w lodówce i ograniczeniu do kontrolnego pomiaru raz na kwartał wystarczą na kilka lat. Koszt zakupu obu, to około 65 zł. Zerknij tutaj aby zobaczyć jak wygląda używanie testów kropelkowych w praktyce.

     
    Dygresja: Raporty wody, które publikują stacje uzdatniania, są wykonywane zanim woda trafi do miejskiego wodociągu, a do kranu są jeszcze kilometry. Po drodze może zmienić swoje parametry. Testy kropelkowe najczęściej wskazują trochę większą wartość jeżeli chodzi o twardość i alkaliczność, tak samo jeśli chodzi o wapń. Woda płynie rurami pod większym ciśnieniem i potrafi jeszcze rozpuścić to co napotka po drodze. Im starsza instalacja, tym więcej soli i węglanów ma szansę dodatkowo się rozpuścić. To dobry powód, dla którego warto zakupić testy jeżeli nie masz systemu RO.
    Raporty wody również często pomijają alkaliczność wody, podając tylko całkowitą twardość. Rzadko jest wymieniony wapń i magnez jako oddzielna rubryka. Wtedy wypada zadzwonić albo napisać maila z prośbą o więcej danych. Możesz też próbować szacować, ale to już wybiega poza ramy tego artykułu.
     
    Trzecia możliwość, to rozcieńczenie. Ma tę przewagę nad gotowaniem, że jest o wiele szybsze i rozcieńcza wszystko w równych proporcjach. Minusem jest koszt, bo baniak 5 litrowej wody kosztuje około 3 zł. Ekonomiczność tego podejścia mocno zależy od Twojej wody. U mnie niestety czasem przy jasnych piwach muszę użyć kilku baniaków. W tej metodzie również przydadzą się testy kropelkowe, chyba że masz pełny raport wody. W swojej skromnej praktyce modyfikacji wody stosuję głównie tę metodę. W najbliższym czasie noszę się z zakupem taniego systemu RO3 głównie ze względu na wygodę.
     
    Powyższe metody nie są jedynymi. Są jeszcze inne techniki i narzędzia na zmiękczenie, zmniejszenie alkaliczności, zmianę proporcji minerałów. Przykładowo, możesz użyć wapna gaszonego, wymienników jonowych, natlenienia, nagazowania CO2 pod ciśnieniem. Chcesz dowiedzieć się więcej? sięgnij po [1].
     
    Masz już przygotowaną wodę. Wybrałeś sobie profil, chociażby w tym miejscu (CaCO3 = HCO3- * 0.82). Czas teraz poznać czym można tą wodę zmodyfikować.
     
    Kwasy
    Rozpocznę od modyfikacji, którą stosowałem jako pierwszą i przez bardzo długi czas. Jest to dostosowanie pH wody za pomocą kwasu. Do tego celu przydatny jest pomiar, do pomiaru służą paski, a jeszcze lepiej phmetr.
     
    Phmetr
    Początkowo wystarczały mi paski, które z czasem zamieniłem na tani phmetr. Wydatek około 35 zł z kosztami przesyłki i to w polskiej dystrybucji.
     

     
    W opakowaniu oprócz urządzenia są dwie saszetki z buforem służące do kalibracji. Rozrabiasz je w oddzielnych naczyniach wg instrukcji i zanurzasz sondę. Następnie powoli nastawiasz śrubę kalibrującą. W obu roztworach musi wskazywać wartość odpowiadającą pH odczytaną z opakowania. Rozrobione bufory możesz przechowywać w szczelnie zamkniętych słoikach kilka miesięcy. Potem trzeba je zmienić na nowe.
     
    Dygresja: W tanich modelach, takich jak ten ze zdjęcia producent podaje, że po pomiarze pH sondę wystarczy przepłukać w wodzie demineralizowanej, zamknąć urządzenie i odłożyć. W ten sposób zniszczyłem swój pierwszy phmetr po kilku miesiącach prawdopodobnie uszkadzając sondę. Teraz robię inaczej. Sondę po pomiarze przepłukuję wodą demineralizowaną i przechowuję w roztworze KCl, najczęściej źródła podają roztwór 3 molowy (~22,5g w 100 ml roztworu), inne roztwór 1 molowy (producent powinien to wyszczególnić w instrukcji). Ważne jest aby sonda była w roztworze takiego elektrolitu wtedy membrana w niej zawarta nie wysycha. W zatyczce urządzenia jest miejsce na około 2 ml roztworu, w ten sposób sonda jest stale zanurzona i nie wysycha. Raz na jakiś czas, niestety, trzeba wymienić roztwór w zatyczce, bo powoli odparowywuje zostawiając trochę soli jako nalot. Nalot rozpuszcza się w ciepłej wodzie. Po każdym użyciu urządzenia, wstrzykuję świeży roztwór do zatyczki. Pamiętaj, aby z płynem w zatyczce phmetr trzymać pionowo, inaczej płyn się wyleje. Tak przechowywane urządzenie dłużej trzyma kalibrację.
     
    Mój model ma napis ATC na obudowie, funkcja kompensacji temperatur, z kórej przy pierwszym podejściu korzystałem nie tak jak trzeba. Jeżeli chcesz aby urządzenie długo Ci służyło, to moja rada jest taka: zawsze należy mierzyć próbki schłodzone do temperatury pokojowej. Nie wciskaj też phmetru w zacier, szybko się uszkodzi, odbieraj rzadką część, schłódź próbkę i dopiero po tym dokonuj pomiaru. Współczynnik pH zależny jest od temperatury, mierząc go w gorącym zacierze dostaniesz przekłamany wynik. Jak mocno? odpowiedź na to pytanie znajdziesz w [1]. Przypominam, pierwszy pomiar zacieru wykonujesz po około 15 minutach. Sam pomiar jest prosty. Włączasz urządzenie. Zanurzasz sondę i czekasz kilka sekund, aż pomiar się ustabilizuje, odczytujesz wynik i na jego podstawie decydujesz co dalej.
     
    Zakwaszanie wody
     
    Zakwaszanie jest łatwe, tanie i skuteczne. W piwowarstwie domowym używa się najczęściej kwasu fosforowego V (ortofosforowego) lub mlekowego. Z zachowaniem zasad bezpieczeństwa - w końcu to stężone kwasy. Powoli dodajesz kwas, zacznij od ilości 1ml, dokładnie mieszasz aby się rozpuścił i dokonujesz pomiaru. Powtarzasz iteracyjnie do momentu uzyskania wyniku. Kwasu możesz dodawać zarówno do zacieru jak i do wody przeznaczonej na wysładzanie. Używam kwasu fosforowego 75%, dozuję go strzykawką. Jeżeli odpowiednio zmodyfikowałem wodę, to korekta brzeczki najczęściej nie jest potrzebna. W innym przypadku wszystko zależy od alkaliczności Twojej wody. Możesz zużyć nawet kilka mililitrów. W przypadku wody do wysładzania wszystko zależy od alkaliczności. Może to również być kilka mililitrów, ciągle mówię o standardowych 20 litrowych warkach. Zatem dodawaj po 0.5 - 1 ml, mieszaj i sprawdzaj wynik. Kwas mlekowy, jest kwasem silniejszym od fosforowego. Dodaje się go w mniejszych ilościach. Zaletą kwasu mlekowego jest to, że pozwala robić piwa zakwaszane. Po rozcieńczeniu jest przyjemny w smaku w porównaniu do fosforowego. Nie muszę chyba mówić, że te roztwory muszą być trzymane w bezpiecznym miejscu z dala od dzieci. Stężenia kwasów są podane wagowo a nie objętościowo. Więc 1 gram kwasu 75% nie jest tym samym co 1 ml. Kwas fosforowy jest gęstszy od mlekowego i oba są gęstsze od wody. Zatem objętość ich będzie mniejsza aniżeli waga.


     
    Jony, aniony, kationy, będą z tego związki
     
    Zapewne zauważyłeś, że wszystko co do tej pory napisałem powyżej ma wpływ na wydajność i komfort pracy enzymów. Jednakże modyfikacja wody to również i smak. Krótka charakterystyka części jonów (po więcej, sięgnij koniecznie do [1]):
    Wapń (Ca2+). Zalecany poziom 50 - 200 ppm. Palmer nazywa go przyjacielem piwowara. Główny jon reagujący z fosforanami ze słodu powodujący spadek pH. Stabilizuje pracę enzymów. Wspomaga koagulację białek, wytrącanie się osadu i szczawianów. Ma również wpływ na metabolizm drożdży. Jeżeli warzysz w kociołku automatycznym, pomyśl nad dodaniem wapnia w procesie gotowania. W przypadku systemu gdzie wysładza się wodą, to przedostanie się go wystarczająco dużo do kadzi warzelnej. W przypadku kociołków, gdzie jest ciągła cyrkulacja, poziom wapnia może (nie musi) być bardzo niski, co może skutkować mętniejszym piwem lub gorszą fermentacją. Wapno ma wysoki próg wyczuwalności, nie uzyskasz raczej takiego poziomu na wodzie z kranu. W przypadku bardzo dużych stężeń smakuje trochę jak woda mineralna. Magnez (Mg2+). Zalecany poziom 0 - 40 ppm. Podobnie jak wapń, ma wpływ na obniżenie pH zacieru. Drożdże potrzebują około 5 ppm magnezu, taka ilość jest zawarta w słodzie, stąd woda może go nie mieć zupełnie. Niektóre style piwa wymagają go trochę więcej, są to głównie piwa mocno chmielone. Od stężenia 125 ppm wykazuje właściwości przeczyszczające. Powyżej 40 ppm, może być odbierany jako nieprzyjemny kwaśno-gorzki smak. Sód (Na+). Najczęściej są to jony wprowadzone przez przydomowe zmiękczacze wody. Woda zmiękczona sodem nie jest najlepszym wyborem w piwowarstwie. W małych stężeniach, poniżej 150 ppm może podnosić odczucie pełni. Ale jeżeli w wodzie pojawi się duże stężenie chlorków to mamy NaCl, czyli sól kuchenną i smak słony. Palmer podaje, aby ilość sodu nie przekraczała 100 ppm. Siarczany (SO42-). Przykładowo siarczan wapnia CaSO4, czy magnezu MgSO4. Ich zwiększona ilość odpowiada za jakość goryczki, robiąc ją bardziej stanowczą i wytrawną. W przypadku zbyt dużej ilości siarczanów smak piwa może stać się lekko mineralny. W przypadku stężenia 200-400 ppm odpowiada za wydłużenie czasu kiedy odczujesz chmielowość. Palmer również podaje, że browary niemieckie jak i czeskie, unikają dużych stężeń siarczanów, bo rujnują smak szlachetnych chmieli kontynentalnych. Chlorki (Cl-). W przypadku wody, są to związki metali z chlorem, przykładowo: chlorek wapnia CaCl2, chlorek cynku ZnCl. Lotne związki chloru powinny zostać z wody całkowicie usunięte. Albo w sposób chemiczny, albo poprzez odstanie przez kilka godzin, albo poprzez przygotowanie. Ilość chlorków nie powinna przekraczać 200 ppm. Odpowiadają za odczucie słodowości i pełni piwa. W dużych stężeniach mogą mieć negatywny wpływ na sprzęt, zwłaszcza wykonany ze stali nierdzewnej. Proporcja chlorków do siarczanów. Chlorki z siarczanami to duet smakowy. W teorii ważna jest ich proporcja. W praktyce czasem wychodzi inaczej. Aby poczuć w smaku wpływu tej proporcji, to ilość chlorków powinna być w zakresie 50 - 200 ppm, a siarczanów 50 - 500 ppm. W przypadku piw słodowych, siarczanów powinno być mało a chlorków kilka razy więcej. Piwa z umiarkowanym chmieleniem, dobrze sprawdzają się blisko równych proporcji. Jeżeli bardziej zależy Ci na wyciągnięciu chmielu, wtedy zwiększasz ilość siarczanów.  
    Dygresja: Proporcje i ich dobór wyjdzie z czasem i praktyką, nie czuję się kompetentny, by doradzać konkretne poziomy. Sam patrzę na tą proporcję trochę przez palce. Przykładowo, lubię nie do końca stylowe AIPA, gdzie przewaga chlorków nad siarczanami jest znaczna, przynajmniej 2:1. Zupełnie inaczej, jak podaje literatura i przykłady niektórych świetnych piw.
     
    W naturze bardzo rzadko występują wolne jony. Kationy wapnia Ca2+ i magnezu Mg2+ w naszym przypadku związane są z kationami czy to w postaci chlorków, siarczanów czy też węglanów. Natura tak chciała i nie ma dyskusji. Zatem modyfikując wodę będziesz dostawał zarówno kationy jak i aniony. A to wymaga już lekkich obliczeń, które wykona za Ciebie kalkulator. Nie będę tego powtarzał, ponieważ nasza wiki opisuje w bardzo dobry sposób modyfikację wody. Poniżej przedstawię najczęściej używane modyfikatory, nazwy będą potrzebne w jednym przykładzie przy użyciu kalkulatora.
    Gips piwowarski, siarczan wapnia (CaSO4 · 2H2O). Wprowadza wapń oraz siarczany. Często stosowany przy warzeniu piw chmielowych. Kupujemy go w postaci proszku, mimo tego jest uwodniony. Czyli w strukturze posiada cząsteczki wody. Oznacza to, że przy przeliczeniu proporcji również musisz tę wodę uwzględnić. Kalkulatory zakładają, że dodajesz właśnie taką postać gipsu. Są jeszcze odmiany bardziej uwodnione (wtedy nie powinny nazywać się gipsem, sklepy piszą różnie). W takim przypadku kalkulatory źle podadzą ilości. Zatem zwracaj uwagę aby kupić dwuwodny, czyli gips. Chlorek wapnia (CaCl2). Wprowadza wapń oraz chlorki. Stosowany jako modyfikator w stylach słodowych. Sól kuchenna, chlorek sodu (NaCl). Wprowadza jony sodu oraz chlorki. Stosowana relatywnie rzadko (chyba, że mówimy o specjalnych piwach jak gose). Jest dobrym wyborem, jeżeli masz nisko sodową wodę i chcesz podbić słodowość. Kreda, węglan wapnia (CaCO3). Wprowadza wapń i powoduje, że woda staje się alkaliczna. Węglan wapnia ma bardzo małą rozpuszczalność. Warto go dodać na  kilka godzin przed warzeniem, aby miał szansę lepiej się rozpuścić. Jego rozpuszczalność zwiększa dwutlenek węgla. Soda, wodorowęglan sodu (NaHCO3). Wprowadza sód i trochę alkaliczności. Stosowana raczej rzadko. Chlorek magnezu (MgCl2 · 6H2O). Wprowadza magnez i chlorki. Jest dość rzadko stosowany, ponieważ ilość magnezu w wodzie powinna być niska. Sprzedawany najczęściej w postaci uwodnionej. Sól gorzka, zwana solą epsom. Siarczan magnezu, (MgSO4 · 7H2O). Jako, że w wodzie stężenie magnezu nie powinno przekraczać 40 ppm, to jest stosowana bardzo rzadko. Wprowadza siarczki i magnez. Jest sprzedawana w postaci siedmiowodnej. Znowu trzeba brać to pod uwagę w obliczeniach. Dodawana jest czasem do wytrawnych nowofalowych IPA.  
    Powyższe związki są tanie i bardzo trwałe pod warunkiem poprawnego przechowywania, czyli szczelnie zamknięte, bez wilgoci i w ciemnym miejscu. Jednakże miej na uwadze to, że jak sypiesz jedną łyżeczkę gipsu, to nie oznacza, że połowa tej łyżeczki to wapń a druga siarczany. Związki składają się z atomów, które mają różne wagi. Aby policzyć ile wagowo znajduje się konkretnego jonu trzeba sięgnąć do tablicy okresowej pierwiastków. Wzór rozkładasz na atomy i przypisujesz im wagę. W gipsie dwuwodnym zawarte są:
    Ca ~ 40u,
    S ~ 32u,
    O ~ 16u,
    H ~ 1u.
     
    Jednostka ‘u’ jest do pominięcia, ważna jest relatywna różnica w wadze, to pozwoli wyliczyć procentowy udział. Wiem, że jesteś ciekawy u = 1,66 * 10-24 g.
     
    Przykład: na łyżeczce jest 3 gramy gipsu. Zapis chemiczny wygląda tak: CaSO4 · 2H2O. Ważna uwaga, musi to być prawidłowy zapis stechiometryczny.
    Woda to: 2 atomy wodoru (H), jeden tlenu (O). Obliczenia: 2 * 1u + 16u = 18u.
    Siarczan wapnia to: 1 atom wapnia (Ca), 1 siarki (S), 4 tlenu (O). Obliczenia: 40u + 32u + 4 * 16u = 136u. 
    Dwuwodna cząsteczka gipsu łącznie waży: 136u +  2 * 18 u = 172u.
    Wagowo woda stanowi około 21% (36/172 * 100%), zatem waży 3g * 0,21 = 0,63g.
    W nabranych 3 gramach gipsu jest 3g - 0.63g = 2.37g czystego siarczanu wapnia.
    Siarczan (SO4) waży 32u + 4*16u = 96u.
    Procentowo stanowi: 96/172 * 100% = 56%.
    Zatem siarczanów jest 2.37g * 0,56 ~= 1.33g.
    Wapnia w takim razie jest 2.37g - 1.33g ~= 1g.
    Ile to będzie mg/l czy też ppm? Aby to obliczyć bierzesz poszczególne wagi i dzielisz przez objętość wody. Morał z tego taki, że siarczan wapnia wagowo bardziej podnosi siarczany niż wapń. Tak właśnie wyglądają obliczenia kalkulatorów wody. Czas przyjrzeć się jednemu, a konkretnie kalkulatorowi od Brewers Friends. Zapoznaj się również z metodologią zamieszczoną pod rubrykami kalkulatora. Dowiesz się jak architekci podeszli do tematu i na czym bazowali.
     
    Kolejny przykład, tak będzie najprościej. Warzę dry stout. Celuję w około 19 litrów idealnie, aby przelać potem do kega typu cornelius. Drożdże wybiorę silnie flokulujące, mało chmielu, więc strat będzie niewiele. Użyję 4 kilogramów słodu, słód mi uwięzi około 4 litrów wody. Następnie gotowanie, odparuje około 4 litrów. Mało chmielu, więc 3 litry to będą straty. Ostatecznie potrzebuję 19 + 4 + 4 + 3 = 30 litrów wody. Będę zacierał w proporcji 4:1, więc do kotła warzelnego idzie 16 litrów wody, reszta czyli 14 litrów do wysładzania.
    Kalkulator pozwala mi zacząć od pełnego raportu wody lub od najprostszego, bazującego tylko na twardości ogólnej, alkaliczności oraz pH. Te trzy parametry wystarczą aby oszacować ile i jakich jonów jest w wodzie pitnej, bo stężenia określonych grup jonów wykazują właściwości korelacyjne (kolejny raz zapraszam aby sięgnąć do [1] lub [2]). Mój raport wody nie zawiera nic o alkaliczności, zatem kupiłem w sklepie zoologicznym test KH-GH. Wyszło mi, już po przeliczeniu na ppm jako CaCO3, że twardość całkowita GH wynosi około 370 ppm jako CaCO3, a alkaliczność KH 230 ppm jako CaCO3
     
    Wybór stylu piwa nie był przypadkowy. Mam wodę alkaliczną i twardą. Dobra do piw raczej ciemniejszych, będzie mniej pracy. Jako profil docelowy wybrałem Dublin (Dry Stout). Korzystam z uproszczonego podejścia, nie będę przejmował się wszystkimi parametrami. Najważniejsze będzie osiągnięcie odpowiedniego poziomu alkaliczności oraz wapnia.
    Wodę do wysładzania będę rozcieńczał wodą demineralizowaną, więc tak naprawdę będą dwa źródła wody. Woda do warzenia - prosto z kranu. Pozwolę jej odstać noc aby pozbyć się lotnego chloru. Woda do wysładzania będzie rozcieńczona, więc ma inne parametry. Użyję 10 litrów wody demineralizowanej a brakującą część dopełnię kranówką. Chcę uzyskać wodę miękką, mało alkaliczną. Zatem rozcieńczenie wynosi około 70%. O tyle samo spadnie twardość i alkaliczność rozcieńczonej wody z kranu. Wartości wody do wysładzania to: GH = 110, KH = 70.
    Mam już wszystko. Profil wody możesz znaleźć pod tym linkiem. Lub używając kodu: JBBLGXV.
     
    Krok po kroku, jak wyglądał proces obliczeń w celu dostosowania wody.

    Przestawiłem się na jednostki z układu SI. Wyszło mi, że potrzebuję 30 litrów wody. Woda do zacierania 16 litrów, do wysładzania 14 litrów. Będę używał innej wody w obu procesach.
     

    Nie dysponowałem pełnym raportem. Ograniczyłem się do do pomiaru testem kropelkowym. Przeliczyłem ze stopni niemieckich na ppm jako CaCO3. Z pomiaru pH = 7.3.

    Warzę stouta, więc wybieram profil odpowiedni do stylu. Wybór uzupełnił mi wartości docelowe. Zamiast konkretnego wyboru możesz tam wpisać własne wartości, w które celujesz. Teraz cała trudność, trzeba tak dobrać sole i węglany, aby trafić jak najbliżej wartości docelowej. Delta powinna być jak najbliżej 0. Wartości zielone oznaczają, że jest dobrze. Tak jak mówiłem wcześniej: wartości magnezu oraz siarczanów są wyliczone w sposób przybliżony. Nie przejmuję się nimi. Wartość siarczanów odbiega do 53, jest na progu wyczuwalności. Nie chciałem rozcieńczać wody do zacierania, więc godzę się na lekkie odchylenie. Z wapnem i alkalicznością trafiłem tak jak trzeba. Wybrałem kredę do modyfikacji, bo zawiera oba jony, których mi brakuje. Kredy wyszło: 6.5 g. Wodę warto przygotować dzień przed warzeniem i kredę w niej rozpuścić, co jakiś czas mieszając, niestety podobnie jak węglan wapnia nie rozpuszcza się natychmiast. Brakowało trochę chlorków i sodu. Jony te zawiera sól kuchenna. Wystarczył 1 gram soli. Woda do warzenia gotowa. Czas na wysładzanie.

    Woda była rozcieńczona. Wpisałem wartości, które obliczyłem wcześniej.

     

    Woda miała za duże pH więc użyłem kwasu fosforowego V by ją zakwasić. Mam kwas 75%, więc taki ustawiłem. Kalkulator mi podpowiedział ile go potrzeba, przepisałem tę wartość. Docelowa była ustawiona na 5.4, nie ruszałem. Zaznaczyłem opcję, aby kalkulator uwzględnił powyższe wartości. Nic tylko warzyć.
     
    Jeżeli będziesz zaczynał od wody RO, to w uproszczonym raporcie wpisujesz wartość 0 dla KH i GH. Woda demineralizowana i RO nie będzie miała pH równego 7. Dlatego, że jest w niej trochę rozpuszczonego CO2, co za tym idzie będzie tam kwas węglowy. Zatem pH będzie poniżej 7. Jest to powód, dla którego woda demineralizowana nie nadaje się do kalibracji phmetrów.
     
    Zakończenie
     
    Jeżeli dotrwałeś do tego momentu i jeszcze nie śpisz, to jestem pełen podziwu. Dowiedziałeś się podstaw dotyczących wody w piwowarstwie domowym. Głównie w aspekcie wydajności. Chociaż też pojawiło się kilka zdań o wpływie składu wody na smak. Warto abyś teraz sięgnął po pozycję [1] i zobaczył, że temat ten jest trochę szerszy. Z pozycji [1] również dowiesz się, jak przygotowują i modyfikują wodę duzi gracze. Dlaczego wymienniki jonowe stosowane przez koncerny nie są takie złe. Co daje napowietrzanie wody, a co przepuszczanie dwutlenku węgla pod wysokim ciśnieniem. Jak działają bufory słodów i wiele innych ciekawych informacji.
    Mam cichą nadzieję, że powyższy artykuł przyczyni się do podniesienia wydajności w Twoim domowym browarze. Zużyjesz mniej energii i słodu. Będziesz nosił mniejsze ciężary a Twoje piwo stanie się jeszcze lepsze. Sam proces modyfikacji nie jest skomplikowany, zwłaszcza że wiesz już co w tej wodzie się dzieje.
    Dziękuję serdecznie recenzentom. Proszę kierujcie trudne pytania właśnie do nich ;). Dziękuję również Tobie, za poświęcony czas i do zobaczenia w następnym artykule.
     
     
     
    Na prośbę forumowiczów zamieszczam dodatkowo dokument w formacie PDF z powyższym artykułem. Możesz go pobrać tutaj: O wodzie w browarze domowym, bez lania wody .pdf.
     
     
     
    Możesz być zainteresowany również:
    Bank drożdży piwowarskich w domowych warunkach Odzyskiwanie drożdży z piwa niepasteryzowanego Skuteczność popularnych środków dezynfekujących na brettanomyces StarSan, tani i skuteczny środek dezynfekujący Wyjaśnienie jak działają enzymy podczas zacierania Cukier kandyzowany domowej produkcji Kilka słów o namnażaniu drożdży w starterze Jak długo przechowywać gęstwę Rehydracja drożdży suchych, temperatura ma znaczenie Prosty sposób na tanie i szybkie chłodzenie brzeczki latem Nie samym piwem człowiek żyje, czyli chmielona woda na upalne dni Zrób to sam, czyli jak wykonać mieszadło magnetyczne posiadając dwie lewe ręce  
    Jeżeli zauważyłeś błąd to proszę zgłoś go jako prywatną wiadomość, by nie robić off-topu w komentarzach. Poprawię z adnotacją. Jeżeli błąd wymaga dyskusji, oczywiście komentuj.
  2. Dzięki!
    DanielN otrzymał(a) reputację od smola w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    Wpływ tlenku wodoru na piwo
    czyli o wodzie w browarze domowym, bez lania wody
     
     
    Tlenek wodoru, również zwany oksydanem, to nic innego jak woda. H2O jest to najczęściej spotykana cząsteczka wody o niezwykle ciekawych właściwościach. Jakby nie patrzeć, woda jest głównym składnikiem piwa. Mówiąc o wodzie będę miał na myśli wszystko co jest w niej rozpuszczone i zawieszone.
    Woda jest przeceniana przez początkujących adeptów piwowarstwa domowego. Jest również niedoceniana przez wielu zaawansowanych piwowarów. W literaturze spotkasz się lub spotkałeś z opinią, że pozwala robić piwa świetne pod warunkiem, że nauczyłeś się robić piwa dobre. Woda w piwowarstwie używana jest na każdym etapie produkcji. Zauważ, że myjemy cały sprzęt. Niemal zawsze używamy jej jako rozpuszczalnika środków dezynfekujących. Dzięki doskonałym właściwościom cieplnym jest niezastąpiona podczas chłodzenia oraz podgrzewania. Nawet w zacierze proporcja wody do słodu ma znaczenie. Zacier najczęściej trzeba wysłodzić, oczywiście wodą. To woda jest w  końcu głównym składnikiem piwa. Mimo tego, dość mało o niej wiemy.
    W tym artykule chcę zmierzyć się z tematem wody w kontekście naszego hobby.
    Z góry ostrzegam, że będzie trochę wzorów. Jeżeli jeszcze się nie wystraszyłeś to zapraszam.
     
    Dygresja: Zanim zaczniesz modyfikować wodę na potrzeby swoich warek to proszę o chwilę refleksji. Zadaj sobie pytanie: czy opanowałeś czystość? (w kontekście braku infekcji). Drugie pytanie: czy masz warunki i jesteś w stanie przeprowadzić poprawnie fermentację? Jeżeli wahałeś się odpowiedzieć twierdząco na którekolwiek z pytań, to nie ma sensu dostosowywać wody. Woda ma wpływ na smak, ale na tyle subtelny, że każdy błąd fermentacji spowoduje, że nie odczujesz różnicy. Błędy fermentacji je przykryją. Natura i wodociągi tak chciały, że woda z kranu najczęściej się nadaje do warzenia i zrobi dobre piwo. Napisałem najczęściej, bo czasem jest tak, że w piwie goryczka ściąga, na podniebieniu występuje dziwna szorstkość, a słody nie oddają w pełni swojego charakteru. Temu może być winien profil wody. Zapraszam i zachęcam do dalszego czytania, mam nadzieję, że na wodę spojrzysz jako składnik piwa, który coś znaczy.
     
    Artykuł opieram na poniższych źródłach:
    “Water”: A Comprehensive Guide for Brewers, John Palmer, Colin Kaminski, Brewers Publications 2013, ISBN 09-373-8199-3. Chyba jedyne, bardzo dobre, opracowanie na temat wody stricte w kontekście piwowarstwa. Aby zrozumieć niektóre koncepcje w niej przedstawione musiałem posiłkować się pozycjami i artykułami wymienionymi poniżej. “Chemia wody”, Jan R. Dojlido, Arkady 1987, ISBN 83-213-3359-1. Stąd będą pochodzić wzory, budowa cząsteczki wody oraz jej właściwości. Kompendium wiedzy o chemii wody. “How to Brew: Everything you Need to Know to Brew Beer Right the First Time”, John Palmer,30 maja 2006, ISBN 0937381888, pozycji chyba nie trzeba przedstawiać. Część, z której korzystałem można przeczytać on-line tutaj. “Opracowania tematów z chemii”, Praca zbiorowa pod redakcją Witolda Mizerskiego. Grupa Wydawnicza Adamantan s.c. 2017, ISBN 978-83-7350-431-8. Posiłkowałem się rozdziałem o obiegu wody na naszej planecie, wzbogacając go o dodatkowe informacje z [2] oraz [1]. Stanowi też źródło definicji części pojęć chemicznych. Książka mi bardzo pomogła zrozumieć wiele zagadnień chemicznych. https://wiki.piwo.org, kawał dobrej roboty jeżeli chodzi o dostosowywanie składu wody. W artykule również będę poruszał ten temat, ale nie tak obszernie. Nie ma sensu się powtarzać. Prelekcja Johna Palmera ‘Residual Alkanity & Brewing Water’. Jest to w zasadzie śmietanka wzięta z [1]. Artykuł: Understanding Residual Alkalinity & pH pochodzący z Brew Your Own. Pokrywa się z wiki [5], dodatkowo omawia zależność pomiędzy kolorem piwa a alkalicznością. Artykuł jest opublikowany w ramach wolnego dostępu.  
    Nie jestem związany z chemią i temat, z którym się mierzę był mi bardzo trudny. Na szczęście Kantor oraz Tibek wsparli mnie jako recenzenci techniczni. Dodatkowe wsparcie merytoryczne oraz stylistyczne otrzymałem również od żony, jako pierwsze przebiła się przez artykuł wprowadzając niezliczone poprawki. Ostateczny kształt artykuł uzyskał po wprowadzeniu poprawek i uwag otrzymanych od Alert, Oskaliber, Pan Łyżwa i Undeath.
    Nie sposób streścić całą chemię wody na kilku stronach, dlatego musiałem zastosować wiele uproszczeń. Recenzenci spisali się na medal, poprawiali mnie i kierowali ponownie na tory jeżeli gdzieś się myliłem. Po prostu właściwi ludzie na właściwych stanowiskach i to we właściwym czasie!
     
    Przeczytanie artykułu zajmie Ci wieczór a może nawet cztery. Możesz zasnąć, bo zdarza mi się troszeczkę przynudzać. Zaczynajmy.
     
    Przyroda to ‘psotnik’, tak wielki, że trzeba o tym opowiedzieć. Brzmi zagadkowo? Zagadki są po to by je rozwiązywać.
    1. Cykl hydrologiczny
    Cykl hydrologiczny to naukowa nazwa obiegu wody w przyrodzie. Woda na naszej planecie zajmuje większość powierzchni, jest to woda z rozpuszczoną dużą ilością minerałów, mówię oczywiście o wodzie słonej. Woda słodka powstaje w jednym z etapów cyklu hydrologicznego. Początkowo słona woda z mórz i oceanów, ale też lądowa, ogrzewa się i paruje. Słońce dostarcza energii, by proces w ogóle mógł zajść. Parująca woda to nic innego cząsteczki wody w postaci gazowej, myślę że analogia do gigantycznego destylatora jest w tym przypadku na miejscu, ‘psotnik’ się odnalazł. Lotne cząsteczki zostawiły rozpuszczone sole oraz zanieczyszczenia i unoszą się ku górze. Wysoko w atmosferze postać gazowa kondensuje się w wyniku obniżenia temperatury. To zjawisko jest namacalne, to oczywiście chmury. W chmurach woda może przybierać dwa stany skupienia: ciekły w postaci drobinek wody oraz stały jako kryształki lodu. Powierzchnia planety nie ma jednakowego ciśnienia. Różnice ciśnień w różnych obszarach powodują ruch powietrza, czyli wiatr, ten pcha chmury. Część z nich trafi na lądy. Przy odpowiednich warunkach spadnie na ziemię w postaci deszczu lub śniegu, czasem gradu. Po opadzie, woda ponownie paruje powtarzając cykl. Część jednak zdąży wsiąknąć w glebę, zasilić rzeki, jeziora oraz inne cieki wodne. Rzeki z czasem spłyną do morza lub oceanu i ponownie cykl się powtarza. Części wody, jak już wspomniałem, wsiąknie i powiększy zasoby wody podziemnej. W cyklu również dużą rolę odgrywają rośliny i zjawisko transpiracji. Mamy również zmagazynowane duże ilości wody w wiecznie zmarzniętych lodach.
     
    Cykl hydrologiczny przedstawia rysunek:
     

    W ten sposób mamy wodę nadającą się do picia, nawet jeśli źródłem jest słony ocean czy też obszar wodny o znikomym znaczeniu strategicznym, czyli kałuża.
     
    Nasze ujęcia wody pochodzą z wód gruntowych jak rzeki, studni np. oligoceńskich lub głębinowych. Do każdego źródła woda dotarła w nieco inny sposób i pod innymi warunkami. Wody powierzchniowe w krajach rozwiniętych, często są mocno zanieczyszczone przez odpady chemiczne, które wiszą w powietrzu lub osiadają na powierzchni. Podczas opadów woda je rozpuszcza i niesie ze sobą. Oprócz odpadów z atmosfery krople wody rozpuszczą w sobie niewielką ilość dwutlenku węgla. Woda wsiąkając w ziemię rozpuszcza minerały z gleby. Woda, która dociera do głębin przesącza się przez pokłady kredy, gdzie staje się bogatsza w wapń, a dolomity wzbogacają ją również w magnez. Ważną rolę w tym procesie odgrywa dwutlenek węgla i ciśnienie.
    Zakłady uzdatniania wody nie mają lekko. Zanim woda popłynie z kranu musi być do tego przygotowana. Zanieczyszczenia zostaną z niej usunięte, a mineralizacja utrzymana w normach. Większość pracy w tym temacie wykonują duże stacje uzdatniania wody, małe stacje przydomowe, lub jeszcze mniejsze systemy odwróconej osmozy (RO - reverse osmosis).
     
    Masz już pogląd jak to wszystko wygląda. Nie bez przyczyny wymieniłem kilka pierwiastków. W kontekście piwowarstwa będziemy najbardziej zainteresowani kilkoma rozpuszczonymi cząsteczkami/jonami, będzie to dwutlenek węgla CO2, wapń Ca2+ oraz magnez Mg2+. Pominę zanieczyszczenia innymi metalami i związkami - tym zajęły się punkty uzdatniania.
    Wspomniałem o rozpuszczalności, zacznę od wyjaśnienia tego zjawiska. By to zrobić musimy zejść do nieco mniejszego wymiaru. Opowiem trochę o cząsteczce wody [2].
     
    2. Właściwości wody
    Ograniczę się do minimum, jeżeli jesteś bardziej dociekliwy to zapoznaj się z definicją  wody, którą oferuje Wikipedia. Wszystkie rysunki zapożyczyłem z [2]. Świetna książka, z racji wieku niektórzy sensorycy piwni powiedzieliby że się ‘utleniła’. Otóż wcale nie, ciągle jest aktualna i świeża.
     
    Graficznie cząsteczka wody wygląda tak jak na poniższym rysunku.

    Tlen tworzy wiązanie z dwoma atomami wodoru. Jest to solidne wiązanie, ponieważ tlen potrzebuje dwóch elektronów, aby na powłoce walencyjnej miał oktet. Atomy wodoru są oddalone od siebie i usytuowane pod kątem blisko 105°. Atom tlenu zyskuje dwa elektrony, które mają ładunek ujemny. Wodór przekazał elektron i ma ładunek dodatni pochodzący od protonu. Przez niesymetryczną budowę cząsteczka H2O zyskuje moment dipolowy. Wypadkowy ładunek jest równy zeru, ale nierównomierne rozłożenie powoduje, że cząsteczka jest polarna (dipolowa). Można powiedzieć, w uproszczeniu, że przy tlenie jest trochę ujemna a przy wodorze trochę dodatnia. To daje wodzie super właściwości. Cząsteczki wody potrafią łączyć się w większe grupy tzw. asocjacje, chaotyczną sieć połączonych ze sobą cząsteczek sięgającą nawet do 100 sztuk [2]. Przerywane linie to połączone kolejne cząsteczki wody.

    Asocjacje czasem pękają w różnych miejscach pod wpływem sił zewnętrznych. Wtedy mówimy o zjawisku dysocjacji. Czasem wiązanie pęknie tak, że powstają dwa jony. Kation hydroniowy H3O+ oraz anion wodorotlenkowy OH-. Reakcja ta ma zapis: 2H2O ⇔ H3O+ + OH-, jest to dysocjacja. Strzałka skierowana w dwie strony oznacza, że reakcja przebiega w jednocześnie w obie strony. Gdzieś w szklance wody cząsteczki się rozpadają tworząc jony, a w innym miejscu jony łączą się ponownie tworząc wodę. Reakcja ta zachodzi bardzo, bardzo rzadko, ale ma ogromne znaczenie. Wrócę do tego jak będę omawiał pH.
     
     
     
    Jon, jest to atom lub grupa związanych atomów, która posiada ładunek elektryczny. Jeżeli ładunek jonu jest dodatni, to mówimy o kationie. Wtedy atom oddał jeden lub więcej elektronów i stał się przez to naładowany dodatnio. Jeżeli jest to więcej jak jeden elektron, to liczbę zapisuje się w górnym indeksie ze znakiem ‘+’ dla kationów, analogicznie ‘-’ dla anionów. Przykładem jest kation wapnia Ca2+, lub wodoru H+. Jeżeli atom lub grupa przyjęła elektron, wtedy mówimy o anionach, które mają ładunek ujemny. Przykład to wodorotlenek OH- oraz anion węglanowy CO32-.
     
    Dygresja: W rozważaniach, kationami będą metale pochodzące z rozpuszczonych soli, już wymieniony Ca2+, Mg2+ ale też Fe2+. Numer w indeksie górnym to ładunek jonu, w przypadku kationów metalicznych jest równy stopniu utlenienia. Utlenienie to nie jest reakcja związana tylko z tlenem jako pierwiastkiem. Warto zapoznać się z definicją reakcji redoks. W piwie za utlenianie odpowiada nie tylko tlen, ale też szereg procesów w efekcie powodujących jego starzenie w mniej lub bardziej przyjemny sposób.
     
     
     
    Jak to się dzieje, że woda rozpuszcza? Wsypuję łyżkę soli a ta znika. Cóż, są trzy drogi by woda rozpuściła substancję [2]:
    zawiesina - cząsteczki o rozmiarze większym jak 0.5µm są zawieszone w wodzie. Z czasem pod wpływem pewnych sił i warunków, jak temperatura i ciśnienie sedymentują (opadają) na dnie. koloid - rozmiar cząsteczki poniżej 0.5µm, ale większy aniżeli 1nm. Ten stan w odpowiednich warunkach może utrzymywać się permanentnie. W piwach kolodiy najczęściej sedymentują po długim okresie czasu. Nawet piwo pszeniczne wyklaruje się w odpowiednio długim czasie. Chłód przyśpieszy ten proces. Czy Twoje piwo to koloid? Możesz to łatwo sprawdzić wykorzystując efekt Tyndalla (en). roztwór - cząsteczki mniejsze od 1 nm. W tym artykule będę mówił o tym typie rozpuszczenia.  
    Dygresja: Zawiesiny i koloidy są czymś naturalnym w piwie domowym. Są spowodowane przez cząsteczki chmielu, białka, pozlepianych tanin z białkami, czasem skrobi. Zawiesiny i koloidy można odfiltrować mechanicznie lub strącając je chemicznie. Teraz wiesz jakim filtrem mechanicznym musisz się posługiwać, by pozbyć się cząstek zawieszonego chmielu. Dlatego w piwowarstwie domowym filtrują ułożone złoża a nie wielkość oczek w filtrze oraz czas filtracji. Wybierając filtrator ważniejszym parametrem będzie jego powierzchnia wymiany. By znacznie ograniczyć ilość zawiesiny/koloidu lepiej użyj szybkiego schłodzenia, z angielskiego zwanego cold crash (CC). Jeżeli jest to za mało skuteczne, to zawsze możesz użyć żelatyny, zolu krzemionkowego, mchu irlandzkiego, isinglasu.
     
    Rozpuszczalność najczęściej zależy od temperatury i ciśnienia. Wraz ze wzrostem temperatury rozpuszczalność minerałów/soli rośnie, gazów maleje (są wyjątki od tej reguły). W przypadku gdy ciśnienie wzrasta a temperatura spada wtedy rozpuszczalność gazów jest większa.
     
    Sole rozpuszczają się dysocjując. Cząsteczka rozpada się na jony. Następnie woda, dzięki właściwościom polarnym otacza taki jon i utrzymuje go zawieszonego w strukturze. Myślę, że ilustracja powie więcej aniżeli suchy opis. Tak wygląda rozpuszczona cząsteczka soli kuchennej:

     
    Sól kuchenna (NaCl) jest jak najbardziej wykorzystywana do modyfikacji wody w piwowarstwie. Przeciwne ładunki się przyciągają, polarność wody gra tu kluczową rolę. Kation sodu Na+ zostaje otoczony przez cząsteczki wody. Jako, że bliżej tlenu znajduje się ładunek ujemny to cząsteczki ‘obrócą’ się tak, aby wzajemnie się przyciągać. W przypadku anionu chloru Cl- bliżej są kationy wodoru H+. Tak właśnie wygląda rozpuszczanie substancji w roztworze. Zauważ też, że do rozpuszczania jednego jonu potrzeba jest kilku cząsteczek wody. Jest to jeden z powodów, dlaczego różne substancje rozpuszczają się w różnym stopniu.
     
    Co w przypadku takich cząsteczek jak dwutlenek węgla CO2? Jest to cząsteczka liniowa. Do atomu węgla po przeciwnych stronach dołączone są atomy tlenu (cząsteczka dwutlenku węgla jest tak liniowa, że mogę stworzyć jej rysunek w tekście: O=C=O). Nie wykazuje właściwości polarnych. Nie jest to też jon. W tym przypadku woda również sobie poradzi, w mniejszym stopniu, ale zawsze. Dwutlenek węgla zostanie otoczony przez dwie cząsteczki wody [1], które są w stanie utrzymać go w swojej strukturze. Rozpuszczone cząsteczki, w odróżnieniu od wolnych są często zapisywane w postaci CO2(aq) lub CO2*.
    Szereg reakcji chemicznych zachodzących w wodzie jak: utlenienie, hydroliza oraz kwaśna hydroliza [2] umożliwią lub przyspiesza rozpuszczanie. W przypadku hydrolizy woda jest zarówno rozpuszczalnikiem jak i substratem (bierze udział w reakcji). Przykładowo wapno, które jest wypłukiwane z pokładów kredy (CaCO3). Reakcja ma następujący przebieg: CaCO3 + 2H2O ⇔ Ca(OH)2(aq) + H2(CO3)(aq). Czyli dwie cząsteczki wody weszły w reakcję z kredą, wapno zostało uwodnione, powstało wapno gaszone i kwas węglowy. Na dodatek taką chemię pijesz pod ładną nazwą minerałów.
     
    Masz już pojęcie jak sole mineralne oraz gazy rozpuszczają się w wodzie. Ilość oraz rodzaj tych substancji najczęściej odnajdziesz w raporcie wody. W piwowarstwie najważniejszymi elementami raportu są: alkaliczność, wartość pH oraz zawartość wapnia i magnezu. Wapń i magnez występuje głównie w postaci węglanów, siarczanów i chlorków. To wszystko trzeba wyjaśnić i usystematyzować.
    3. Odczyn i skala pH
     
    Wartość pH odgrywa jedną z kluczowych ról podczas zacierania. Zanim podam definicję, chcę powiedzieć czym jest ten współczynnik w ujęciu chemicznym  oraz rolę w procesie warzenia. Jeżeli jesteś niecierpliwy, przeskocz kilka akapitów.
    Wracam do wzoru, który przedstawiłem na początku. Pozwolisz, że przypomnę. W czystej wodzie nieustannie zachodzi reakcja samorzutnego rozpadu cząsteczek. W wyniku tego powstają jony hydroniowe H3O+ oraz wodorotlenkowe OH-. Reakcja jest dwukierunkowa, czyli jony łączą się ze sobą tworząc ponownie cząsteczkę wody. Dzieje się to ciągle i na pewnym poziomie. W szklance herbaty czy też piwa w jednym miejscu cząsteczka się rozpada a w innym jony się łączą budując cząsteczkę wody.
     

     
    Na rysunku wygląda to jakby jon H+, ta jasna szara kuleczka, skakał z jednej cząsteczki do drugiej. Nie jest to błędne myślenie. W rzeczywistości wolne jony H+ w roztworze nie występują, natychmiast tworzy się jon hydroniowy H3O+ albo inny związek. W rozważaniach i wzorach często spotyka się zapis, że woda ulega dysocjacji w uproszczony sposób H2O ⇔ H+ + OH-. Myślę, że w rozważaniach będzie łatwiej posługiwać się tym uproszczeniem. Zatem jak zauważysz we wzorach H+ to w rzeczywistości jest to jon hydroniowy H3O+.
     
    Dysocjacja jonowa jest to reakcja chemiczna i można wyrazić ją za pomocą iloczynu jonowego Kw. Okazuje się, że ta reakcja przebiega na pewnym poziomie równowagi. Można ją zapisać za pomocą liczb.
    Skracam trochę drogę przez mękę i pomijam równanie stałej reakcji. Jeżeli jesteś zainteresowany i chcesz dowiedzieć się więcej to w [2] lub [1] ten temat jest omówiony bardzo szczegółowo, nie chcę przepisywać książek a przedstawić wynik rozważań.
     
     
    Kw=[H+][OH-]
     
    Kw = 1,0 * 10-14 w temperaturze ~25°C
     

     
    W określonych warunkach Kw jest stałe, oznacza to, że balans stężeń poszczególnych jonów musi być zachowany. Jeżeli zaburzysz równowagę jonów, przykładowo dolewając trochę kwasu co wprowadzi jony H+, to stężenie jonów OH- zmniejszy się. Równanie nadal będzie spełnione. Działa to w dwie strony, dodając silną zasadę po pewnym czasie zmniejszy się stężenie jonów [H+]
    W czystej wodzie stężenie jonów [H+] i [OH-] jest takie same. Zatem chcąc policzyć stężenie jednej grupy wystarczy podstawić ją dwukrotnie do wzoru Kw = [H+] * [H+], dalej  [H+] = pierwiastek(Kw) = 1,0 * 10-7. W czystej wodzie tyle samo wyniesie stężenie jonów [OH-].
     
    Dygresja: W czystej wodzie stężenie jonów jest bardzo małe. Uruchom wyobraźnię. W paczce drożdży płynnych Wyeast znajduje się 100 miliardów komórek drożdżowych. Gdyby założyć, że zachowują się tak jak cząsteczki wody, to tylko 10 pojedynczych komórek ‘uległoby dysocjacji’. Jeżeli rozbudziłem ciekawość i chcesz się dowiedzieć więcej zapoznaj się z [2].
     
    Wartość pH zacieru powinna być w granicach 5.2-5.6, bo w tym przedziale wypadkowa pracy enzymów jest najbardziej wydajna. Enzymy również pracują poza tym zakresem, jednak nie są już tak efektywne. Im dalej od optimum tym słabiej pracują. Jako piwowarzy, naszym celem jest stworzenie warunków, aby mogło zachodzić scukrzanie. Pierwszym czynnikiem jest temperatura, przerwy temperaturowe aktywują enzymy. Drugim, ale nie ostatnim, czynnikiem jest pH. Możemy pomóc, stabilizując je na optymalnym poziomie. Zalety optymalnego pH to większa wydajność. Lepsza praca enzymów, mniejsza szansa przedostania się łańcuchów skrobi do piwa. Filtracja może okazać się łatwiejsza na skutek dobrego rozłożenia betaglukanów i cukrów. Dodatkowo w niższym pH przedostanie się znacznie mniej garbników z łuski, to z kolei przełoży się pozytywnie na smak. Zwiększy się odfermentowanie piwa. Odczyn pH również ma wpływ na rozkład protein. Podczas gotowania będzie większy przełom, a to oznacza klarowniejsze piwo. Przy okazji do brzeczki dostanie się więcej związków azotu (FAN) poprawiających fermentację. Poprawi się również stabilność piany. Jednym słowem piwo będzie lepsze.
    Już wiesz na co wpływa pH i czemu warto dbać o jego optymalny poziom. To jest dobry moment na wprowadzenie definicji.
     
     
        Skala pH jest wskaźnikiem ilościowym kwasowości i zasadowości roztworów wodnych. Wartość bazuje na stężeniu jonów wodorowych [H+]
     
     
    Pojęcie pH wprowadził Søren Peder Lauritz Sørensen. Powyższa definicja jest uproszczona, ale w zupełności wystarczająca do celów piwowarskich. Jeżeli chcesz się dowiedzieć więcej to zerknij tutaj albo tutaj.
     
    Wartość pH określa się według poniższego wzoru:
     
     
    pH = -log([H+])
     
     
    Mimo skomplikowanego zapisu jest to bardzo wygodne. Przed chwilą policzyłeś stężenie jonów [H+] i [OH-] w czystej wodzie, wynosi ono 1,0 * 10-7. Liczba jest bardzo mała i niewygodna w zapisie. Podstawiając ją do wzoru na pH otrzymasz 7. Prawda, że wygląda to lepiej?
    Jeżeli w wodzie rozpuścisz silny kwas, na skutek czego będzie wzrastała ilość jonów [H+] a malała [OH-], bo stała reakcji musi być zachowana, to wartość pH zacznie spadać. Na pierwszy rzut oka wydaje się to nielogicznie, coś dodałeś a wartość spadła. Zauważ, że stężenie wyrażone jest jako ujemny wykładnik 10-7 (to samo co zapis 1/107). Zatem jak przybywa jonów wodorowych, to potęga staje się coraz większa, prosta matematyka: 1/107 < 1/103 < 1/10 < 0. Dodatkowo, by pozbyć się minusa został postawiony on przed logarytmem. Ponieważ tak jest wygodniej. Na samym dole skali jest 100, podstawiając do wzoru, pH = -log(100) = 0. W drugą stronę dzieje się tak samo, aż do momentu gdy, nie będzie już jonów H+. Wtedy wartość wynosi dokładnie tyle co Kw, podstawiając do wzoru pH = -log(Kw) = 14.
    Takie są granice skali pH. Im bliżej 0 tym bardziej kwaśny odczyn. Im bliżej 14 tym bardziej zasadowy. Środek skali to odczyn obojętny i wynosi 7.
     
    Zatem pH również określa zależność pomiędzy stężeniami [H+] i [OH-]. Niektóre reakcje chemiczne wymagają, by stężenie jednych jonów było większę. Enzymy scukrzające, czyli amylazy, najlepiej się czują w pH około 5.5. Czyli jony H+ są w większości i biorą udział w reakcjach, które rozcinają długie łańcuchy skrobi.
     
    Dygresja: skala pH nie ma większego zastosowania w przypadku mocno stężonych kwasów i zasad. W domowym piwowarstwie masz jednak szansę spotkać się z tak mocnymi stężeniami w przypadku mycia lub dezynfekcji. Wtedy obowiązkowo rękawice na dłonie oraz okulary ochronne. Roztwór o pH = 0 otrzymasz poprzez rozpuszczenie 1 mola kwasu solnego (HCl) w 1dm3. Roztwór o pH = 14 otrzymasz rozpuszczając 1 mol wodorotlenku sodu (NaOH). Suchy żart chemiczny: NaOH - zasady ponad wszystko.
     
     
     
    Mol jest to jednostka liczności materii używana przez chemików. Spotkałeś się już zapewne z różnymi jednostkami jak tuzin, mendel, kopa, kwadrans. Mol jest to kolejna nazwa, tylko trochę większej wartości, wynosi 6,022140857(74)×1023 (liczba Avogadra). Mówiąc 1 mol kwasu solnego mam na myśli około 6×1023 cząsteczek HCl. Mole są bardzo wygodne w przypadku reakcji chemicznych. Reagując 2 mole wodoru z 1 molem tlenu powstaje 1 mol wody (2H2 + O2 ⇔ 2H2O). Mole na wagę oblicza się również w prosty sposób, używa się do tego tabel z masą molową pierwiastków. Najczęściej spotykane cząsteczki są już skatalogowane. Przykładowo 1 mol wody waży około 18 gramów.
     
     
     
    Skala pH to skala logarytmiczna. Różnica między pH = 4 a pH = 5 to 10 krotna różnica stężeń. Pomiędzy pH = 3 a pH = 6 jest tysiąckrotna. Każdy jeden punkt przyrostu wartości pH powoduje 10 krotną różnicę w stężeniu, przesuwa rząd wielkości o 1. Pomiędzy odczynem neutralnym a skrajnym jest 10 milionowa różnica stężeń.
     
    Dygresja: Zerknij do tego artykułu by dowiedzieć się więcej o logarytmach. Warto, bo dowiesz się takich ciekawostek, że nasze zmysły również działają w oparciu o tę skalę.
     
    Wszędzie tam gdzie jest roztwór wodny można mówić o pH. W przypadku wielu produktów, które nas otaczają i są zbudowane głównie z wody jesteś w stanie wyznaczyć pH. Żywność, elektrolit  baterii, nasze płyny ustrojowe, środki czystości. Nie będę się rozpisywał. Grafika powie o wiele więcej. Piwo można umieścić gdzieś pomiędzy octem a mlekiem.
     


     
    Wartość pH jest ważna. Pozwala stwierdzić jak i czy w ogóle enzymy pracują. Jednakże miej na uwadze, że jest to wskaźnik, który wynika z szeregu reakcji chemicznych. W piwie są to reakcje, na skutek których pH ciągle maleje, od samego początku procesu przygotowywania piwa. Żeby nie było tak łatwo, są również reakcje, które temu przeciwdziałają. Czas wprowadzić najważniejszy parametr wody w naszym hobby, czyli alkaliczność.
     
    4. Alkaliczność z punktu widzenia piwowara
    Alkaliczność (zasadowość) wody, jest to właściwość określająca zdolność do zobojętniania kwasów. Alkaliczność jest tym większa, im więcej rozpuszczonych jest w wodzie węglanów i wodorowęglanów.  Kolejny raz przedstawiłem uproszczoną definicję, tutaj masz szczegółową. Uwaga: alkaliczność nie zależy od współczynnika pH odczytanego z raportu wody, za chwilę to wyjaśnię.
     
    Z punktu widzenia piwowara alkaliczność możesz traktować jako opór brzeczki przed przed zmianą pH. Zauważ, że napisałem brzeczki, a nie samej wody, bo również słód w pewnym zakresie ma wpływ na spadek pH poprzez swoje właściwości buforujące.
    Alkaliczność możesz sobie wyobrazić jako gąbkę do mycia. Jest w stanie wchłaniać płyn, ale tylko do pewnego momentu. Im większa gąbka tym więcej jest w stanie wchłonąć. Po przekroczeniu pewnej objętości nie jest w stanie przyjąć nawet pojedynczej kropli. W tej analogii płyn traktuj jako jony H+ a gąbka to węglany wiążące te jony.
     
     
     
    Podczas zacierania, pH zacieru spada, staje się on coraz bardziej kwaśny. Dzieje się to głównie na skutek reakcji fosforanów zawartych w słodzie z wapniem. Fosforany stanowią około 1% wagi słodu. Jest ich bardzo dużo w stosunku do wapnia. Spadek pH będzie możliwy do momentu, aż nie zabraknie wapnia. Reakcja jest jednokierunkowa i wygląda tak:
    10Ca2+ + 12HCO3- + 6H2PO4-1 + 2H2O → Ca10(PO4)6(OH)2 + 12CO2 + 12H2O + 2H+
    Fosforany H2PO4-1 reagują z rozpuszczonym wapniem Ca2+ i wodorowęglanami HCO3 , efektem jest hydroksyapatyt, który się strąci i osiądzie, dwutlenek węgla, woda oraz kationy H+ powodujące spadek pH podczas zacierania. Ta reakcja pochłania wapń w pierwszych kilkunastu minutach zacierania [1]. To jest główny powód, dla którego warto poczekać z pomiarem pH około 15 minut.
     
     
     
    Mówiąc o alkaliczności wody, tak naprawdę mówimy o dwutlenku węgla rozpuszczonym w wodzie. Dwutlenek węgla dostał się do wody na kilka sposobów m.in. z atmosfery. Rośliny podczas oddychania również wytwarzają dużo CO2. Jest też odzyskiwany z minerałów zawierających węglany, przez które woda się sączy. Rozpuszczalność dwutlenku węgla jest stosunkowo mała i zależy od temperatury oraz ciśnienia. W temperaturze pokojowej w jednym litrze wody rozpuszczone jest około 0.5mg CO2. Obniżając temperaturę do bliskiej 0 - dwutlenku węgla rozpuści się dwukrotnie więcej. Wody głębinowe, gdzie panuje większe ciśnienie i niższa temperatura mają w sobie rozpuszczone dużo więcej dwutlenku węgla aniżeli wody powierzchniowe.
    Dwutlenek węgla w wodzie może występować w postaci rozpuszczonej CO2(aq). Albo być uwięziony w węglanach. Niewielka część rozpuszczonego dwutlenku reagując z wodą tworzy kwas węglowy H2O + CO2(aq) ⇔ H2CO3. Jest to słaby kwas i dysocjuje (rozpada się na jony w roztworze wodnym) w dwóch reakcjach.
    H2CO3 ⇔ HCO3− + H+, kwas węglowy rozpada się na wodorowęglan oraz kation hydroniowy
    HCO3− ⇔ CO32− + H+, wodorowęglan rozpada się na węglan oraz kolejny kation hydroniowy.
     
    Kwas węglowy i sposób w jaki się rozpada daje możliwość rozpuszczenia się w wodzie wapnia oraz magnezu. Gdy woda sączy się przez pokłady wapnia, kwas węglowy w niej zawarty dysocjuje oddając węglany. Te chętnie wiążą się z wapniem. Powstaje węglan wapnia CaCO3 (CaCO3 ⇔ Ca2++ CO32-). Płynąc przez dolomity, oprócz wapnia zyska również magnez. Pod ziemią, gdzie panuje większe ciśnienie, rozpuszczone jest więcej dwutlenku węgla i minerałów. Wszystkie węglany rozpuszczone w wodzie składają się na alkaliczność.
     
    Reakcje chemiczne mają to do siebie, że przebiegają na pewnym poziomie i w równowadze. Wapń zawłaszczył sobie cześć węglanów. Zatem reakcje będą dążyły do równowagi. Zwolni się trochę miejsca, powstanie nowy kwas węglowy. I znowu zostanie wypłukane trochę wapnia w postaci CaCO3. Po pewnym czasie reakcję znajdą punkt równowagi. Powyżej przedstawiłem uproszczony cykl węglanowy. Sekwencja reakcji chemicznych dążąca do równowagi. Rysunkowo można przedstawić to tak [1]:
     

    Układ będzie zawsze dążył do równowagi, oznacza to że ilość rozpuszczonego dwutlenku węgla musi być w harmonii z wszystkimi postaciami. Jeżeli zburzysz układ, przykładowo podnosząc temperaturę, co zmniejszy ilość CO2, to z czasem wytrąci się osad w postaci węglanu wapnia CaCO3. Jeżeli dodasz trochę węglanu wapnia CaCO3 oraz podniesiesz ciśnienie CO2, to węglan wapnia rozpuści się o wiele szybciej. Te reakcje nie dzieją się momentalnie, potrzebują czasu. Co więcej skutek widzisz codziennie. Kamień na słuchawce prysznica, kranie, sedesie, powstaje na skutek nagłego obniżenia ciśnienia wody. Rozpuszczalność dwutlenku węgla spada i układ węglanowy dążąc do równowagi wytrąca węglan wapnia. Sytuacja analogiczna dzieje się w czajniku elektrycznym, tam na skutek zmiany temperatury. Gospodyni domowa radzi: użyj octu to kamień nie będzie problemem.
     
    Jeszcze jedna uwaga. Postać węglanów zależna jest od pH i wygląda tak [1]:

     
    W zakresie pH zacierania, czyli pomiędzy 5.2 - 5.6 głównie będzie występował pod postacią kwasu węglowego. Stała pK1 wyznacza równowagę między kwasem węglowym a wodorowęglanami, pK2 jest to stała równowagi między węglanami a wodorowęglanami. W wodzie z kranu, gdzie pH najczęściej jest powyżej 7 dominującą postacią jest wodorowęglan.
     
    Na skutek reakcji wapnia z fosforanami, pH brzeczki spada. Układ węglanowy przesunął się w kierunku postaci kwasu węglowego. Pytanie jak to się ma do alkaliczności i tego oporu przed zmianą pH. Do sedna sprawy. Układ węglanowy to reakcje, które działają jak bufor. Bufor wiąże kationy H+, tym samym zapobiega zmianie pH. Oczywiście jest to w stanie zrobić tylko do swojej pojemności, później pH nadal będzie spadało. W brzeczce na skutek ciągłego obniżania pH pojemność tego bufora będzie przekroczona. Jednakże mimo przepełnienia zwiąże część jonów H+ i pH nie spadnie tak mocno. Cała sztuka to tak dobrać alkaliczność wody, by pH zatrzymało się w przedziale optimum zacierania. Druga zmienna tego układu równań, to odpowiednia ilość wapnia.
    W przypadku zacierania buforuje następująca reakcja: HCO3- + H+ ⇔ H2CO3. Wodorowęglany wchodzą w reakcję z kationami H+ pochodzącymi głównie z reakcji fosforanów z wapniem, powstrzymując spadek pH, do momentu aż są wodorowęglany wyczerpią.
     
     
    Bufor na przykładzie: dolewam trochę silnego kwasu do wody alkalicznej, bogatej w węglany. Okazuje się, że woda nie zmienia pH, bo węglany wyłapują i wiążą jony H+. Trwa to oczywiście do pewnego momentu, aż bufor się przepełni. Wtedy pH zacznie spadać w tempie dostarczania jonów H+. Na tej zasadzie działają testy kropelkowe, o których opowiem już niedługo w rozdziale o pomiarach wody. Im więcej węglanów w wodzie tym większe właściwości buforujące. Im większe wartości buforujące tym większy opór przed zmianą pH. W praktyce oznacza to, że jeżeli wybierzesz wodę bardzo alkaliczną i zrobisz lekkie jasne piwo, to może okazać się, że pH jest dalekie od optimum. Enzymy będą pracowały o wiele gorzej, zacieranie będzie trwało długo i może zabraknąć im wapnia przez co nie skończą pracy. Zostanie sporo skrobi. W skrajnych przypadkach może się nie udać kompletnie. Podobnie w przypadku wybrania wody mało alkalicznej i warzenia piwa z dużą ilością ciemnych i karmelowych słodów. Kwas zawarty w słodach pochodzi głównie z reakcji Maillarda i dodatkowo obniża pH. To oznacza, że pH zacieru może spaść za nisko i ponownie enzymy będą miały problemy z pracą.
     
     
     
    Dygresja: Odzyskanie równowagi w cyklu węglanowym może zająć trochę czasu. Większość tych reakcji nie jest demonem prędkości. Dlatego modyfikacje wody, zwłaszcza gdzie używane są węglany warto przeprowadzać kilka godzin przed warzeniem. Będzie to miało jeszcze jedną zaletę. W przypadku gdy Twoja woda jest dezynfekowana związkami chloru, to w kilka godzin większość chloru zleci i piwo będzie lepsze.
     
    W praktyce, policzenie powyższego jest żmudne i łatwo o pomyłkę. Na ratunek przychodzi Paul Kolbach, dokonał on pewnego odkrycia, znalazł pewną zależność.
    5. Twardość wody
    Zanim przejdę od odkrycia Kolbacha, muszę powiedzieć czym jest twardość wody. Będzie potrzebna, aby policzyć ilość wapnia i magnezu w wodzie. Alkaliczność to głównie kompleksy węglanów z wapniem i magnezem (CaCO3, MgCO3). W wodzie oprócz węglanów rozpuszczone są sole mineralne. Najważniejsze w piwowarstwie to oczywiście sole wapnia i magnezu. Najczęściej w postaci siarczanu wapnia CaSO4 inaczej gipsu, chlorku wapnia CaCl2, siarczanu magnezu MgSO4 oraz chlorku magnezu MgCl2. Stężenie wapnia jest najczęściej 4-5 krotnie większe od stężenia magnezu. W wodzie pitnej występują również inne sole. Jednakże jest ich dużo mniej w porównaniu do wyżej wymienionych.
     
    Cała potrzebna teoria już jest, czas ubrać to w definicję:
     

       Twardość wody jest to suma stężeń kationów wapnia [Ca2+] i magnezu [Mg2+].
     
     
    Twardość wody można podzielić na:
    węglanową/przemijającą - w tym przypadku wapń i magnez związany jest z węglanami (CaCO3, MgCO3). Twardość tą łatwo zmniejszyć, chociażby poprzez przegotowanie wody. niewęglanową/trwałą - są to pozostałe sole, z którymi związał się wapń i magnez . Będą to głównie chlorki i siarczany (CaSO4, CaCl2, MgSO4, MgCl2), ale też zdecydowanie mniej liczne azotany i fluorki.  
    Twardość węglanowa to nie to samo co alkaliczność. Twardość liczy stężenia wapnia i magnezu, alkaliczność zajmuje się węglanami. W rachunkach współdzielą te same związki czyli węglan wapnia i magnezu, ale parametr twardości bierze pod uwagę kationy Ca2+  i Mg2+, natomiast  alkaliczność anjony CO32- reagujące z kationami [H+].
     
    Dygresja: Zakłady uzdatniania wody dbają o nasze zdrowie jako populacji, nie koniecznie o kondycję drożdży w Twoim fermentorze. To co pijemy z kranów ma związki, które są bezpieczne i potrzebne ludziom. Zatem nie uświadczysz takich soli jak chlorek cynku ZnCl2, który jest potrzebny drożdżom. Warto, abyś dodał trochę pożywki piwowarskiej, przynajmniej do startera, która zawiera cynk. Cynk jest potrzebny drożdżom do namnażania. Masz już kilka warek na koncie? opanowałeś warsztat, ale problemy z długim startem drożdży? Spróbuj dodać pożywki z cynkiem, może pomóc.
     
    6. Alkaliczność rezydualna RA
    Badania i eksperymenty Kolbacha doprowadziły do wyznaczenia zależności pomiędzy alkalicznością oraz reakcjami z wapniem i magnezem podczas zacierania. Odkrycie wskazało, że wapń oraz magnez powoduje obniżenie jej alkaliczności w przewidywalny, zatem obliczalny, sposób. W przypadku wapnia 3.5 jednostki tego metalu obniża alkaliczność o 1. W przypadku magnezu, aby obniżyć alkaliczność o 1 potrzeba aż 7 jednostek. Na tej podstawie można zapisać już wzór [1] alkaliczności rezydualnej RA. Jest to alkaliczność z którą trzeba się zmierzyć. Czyli tak dobrać parametry wody, by pH zacieru zatrzymało się w optimum.
     
     
    mEq/L RA = mEq/L Alkaliczność- (mEq/L Ca/3.5 + mEq/L Mg/7)
     
     
     
     
    W powyższym wzorze występue jednostka mEq/L są to miliekwiwalenty. W naszych raportach wody częściej spotykana konkretna jednostka ppm (mg/l) jako CaCO3.
    Porównanie jakichkolwiek wartości ma sens, jeżeli są w tej samej skali/jednostkach. Waga 10 kilogramów, to nie to samo co 10 funtów. Prędkość 10 metrów na minutę, nie jest taka sama jak 10 mil na godzinę. Trzeba te wartości znormalizować, sprowadzić do wspólnej jednostki, albo wyrazić jedną jako drugą. Można też znaleźć wspólny punkt odniesienia. Tym właśnie jest mEq/L. Jeżeli chodzi o alkaliczność oraz stężenia jonowe, to wygodnie jest posługiwać się wagami, bo wiadomo ile tego dodać, bez zbędnego przeliczania moli na wagę. Waga wyrażona jako ppm lub inaczej mg/l jest chyba najczęściej stosowana w przypadku roztworów wodnych. Aby było ciekawiej, w przypadku alkaliczności przelicza się ją jako CaCO3 i ma to sens. Chodzi o ilość substancji, która przereaguje. Alkaliczność jest to opór przed zmianą pH, ale można na nią spojrzeć trochę inaczej. Alkaliczność pochłania jony H+ do momentu, aż nie jest w stanie ich więcej przyjąć. Po przepełnieniu pH spada. Jony H+ to nic innego jak kwas. Ustalam punkt odniesienia powiedzmy pH = 4.5 i dodaję kwas powoli, aż osiągnę ten wynik. Wyszło mi X miligramów tego kwasu. Gdybym użył innego kwasu to wyszłoby Y miligramów, nadal brak jednoznaczności. Dlatego potrzebny jest kolejny krok, punkt odniesienia. Mając ilość tego kwasu mogę teraz policzyć ile minimalnie miligramów CaCO3 potrzeba, aby ta sama ilość kwasu przereagowała calkowicie z węglanem wapnia. Nieważne, który kwas wybiorę, ilość CaCO3 wyjdzie taka sama. Ta minimalna ilość, to jest właśnie odpowiednik alkaliczności wyrażonej w ppm (mg/l) jako CaCO3. Pozostaje jeszcze wapń i magnez. Są w postaci stężeń. Trzeba je przeliczyć na mg/L. Tabele chemiczne w rękę i sprawdzam ile waży pierwiastek Ca a ile Mg. Na podstawie stężeń i wagi pierwiastka można obliczyć całkowitą wagę. Ostatecznie mam taką formułę:
     
     
    RA = Alkaliczność -  (Ca/1.4 + Mg/1.7)
     
     
    Rezydualna alkaliczność (RA) oraz alkaliczność, wyrażona jest w ppm jako CaCO3, wapń oraz magnez w ppm. Teraz już można posługiwać się wygodnymi wagami.
     
     
    Przykład. Raport wody wymienia: wapń Ca = 70 ppm, magnez Mg = 14 ppm, alkaliczność = 80 ppm jako CaCO3. Ze wzoru wychodzi RA = 80 - (70/1.4 + 14/1.7) ~= 28. Wartość 28 jest to alkaliczność rezydualna, z którą musisz się zmierzyć modyfikując wodę lub też dobierając odpowiedni styl piwa. O tym za chwilę.
    Jeżeli woda będzie mało alkaliczna, czyli zawiera mało węglanów, natomiast zawartość siarczanów i chlorków będzie podwyższona, to RA może spaść poniżej 0. Jest to jak najbardziej poprawny wynik.
    Zanim przejdę do modyfikacji wody muszę opowiedzieć jeszcze o wpływie słodu na alkaliczność oraz o współczynniku ilości wody do słodu w kotle zaciernym. Badania Kolbacha uzupełnili Troester, Bies oraz A.J. deLange. Aby wiedzieć, kto miał jakie zasługi to proszę zapoznaj się z [1], w tym artykule przedstawię tylko wyniki badań. Pierwszym wynikiem eksperymentów było odkrycie, że stosunek zasypu do ilości słodu, ma wpływ na alkaliczność rezydualną.

     
    RA będzie większe w zacierze gęstszym. Tabela przedstawia wartość RA dla słodu pilzneńskiego i monachijskiego. Każdy wiersz to gęstość zacieru od 2 litrów do 5 litrów na kilogram. Robiłeś kiedyś RISa? Na 100%, by mieć większy ekstrakt robiłeś gęstszy zacier. Tym samym również miałeś większe RA. W tym stylu jest to bardzo dobre, ponieważ duża ilość kwasów z ciemnych słodów została zobojętniona i pH nie spadnie za nisko. W drugą stronę. Jakbyś zrobił bardzo gęsty zacier i super jasne piwo, wtedy pH może stabilizować się ponad optimum. Przy zasypie 3:1 - 4:1 nie ma spektakularnej zmiany RA. Co więcej taki współczynnik również jest bardziej optymalny dla amylaz (rozpuszczalność cukrów jest lepsza w rzadszym zacierze). W przypadku jeżeli zacierasz w kociołku automatycznym, na skutek mocnego rozrzedzania wpływ na RA będzie mniejszy.
     
    Gęstość zacieru pozwoliła wyciągnąć wnioski i zapewne przynieść duże oszczędności dużym graczom. Przyszedł czas na taki szczegół jak grubość śruty wpływa na właściwości buforujące. Nie ma już tak spektakularnych wyników, ale można zauważyć, że bardzo drobno ześrutowany/sproszkowany/mączny (pulverized) słód bardziej podnosi RA aniżeli śrutowanie grube. Przyjrzyj się poniższej tabeli.

    Ponownie słód pilzneński i monachijski. Szczelina śrutownika od mąki/proszku do 1.2 mm. Zatem bardzo drobna śruta nieco więcej podnosi RA. Znowu duzi gracze oszczędzają. My piwowarzy, może mali co do skali ale wielcy co do jakości, możemy również zaoszczędzić. Masz śrutownik? - zacznij śrutować trochę drobniej, ale nie przesadź na tyle, że zatrzyma Ci filtrację. Będzie większa ekstrakcja i trochę większe RA, co jest dobre w przypadku ciemniejszych piw.
     
    Przyszedł czas na kolejne badanie. Jak rodzaj/typ słodu wpływa na kwasowość/zasadowość zacieru. Przyjrzyj się tabeli.
     

     
    Dokładną analizę tabeli poznasz w [1]. Skupię się tylko na dwóch kolumnach. Zerknij w kolumnę pH oraz koloru. Zauważ relację, im ciemniejszy słód, tym pH było niższe. Można też powiedzieć, im ciemniejszy słód tym większego RA wymaga, by pH nie spadło za nisko. Wnioskiem z eksperymentu jest to, że piwa z dużą ilością słodów ciemnych i karmelowych muszą mieć wodę bardziej alkaliczną. Inaczej pH może spaść za nisko i efektywność zacierania będzie mniejsza. W przypadku piw jasnych woda powinna być mniej alkaliczna.
     
    Zadaniem piwowara jest dobranie tak alkaliczności wody oraz głównie wapnia, mniej magnezu, aby pH zatrzymało się na oczekiwanym poziomie, pomiędzy 5.2 a 5.6. Alkaliczność oraz ilość wapnia jest powiązana ze sobą przez równanie rezydualnej alkaliczności RA. Rodzi się pytanie, czy nie da się tego wszystkiego jakoś powiązać? Otóż da się, za pomocą koloru piwa. Nie jest to żart. Im ciemniejszy kolor tym więcej kwasowości pochodzących ze słodu. Nie trzeba przeliczać proporcji słodów ciemnych/specjalnych/karmelowych. Wystarczy docelowy kolor piwa by zobaczyć jakiej alkaliczności rezydualnej potrzeba. Formuła która łączy to wszystko:
     
     
    SRM = 0.14 * RA (jako CaCO3) + 5.2
     
     
    Pełne złote a skromne, chyba że ciemne, ale też skromne. Kolor piwa powiązany jest z alkalicznością rezydualną, prawda że piękne?
     
    Przykład, aby lepiej zrozumieć. Załóżmy, że z wyliczeń, bez żadnych modyfikacji wody, wyszło RA  = -10 jako CaCO3. Podstawiasz do równania: SRM = 0.14 * -10 + 5.2 = 3.8. Około tego koloru mieszą się piwa pszeniczne, belgijskie, PA i IPA. Poszukaj w Internecie tabel, które wymieniają style piwa pogrupowane po SRM i zobacz jakie piwa możesz warzyć bez modyfikacji wody. Wcale bym się nie zdziwił, że są to piwa, które Ci smakują i zawsze wychodzą najlepiej. W moim przypadku, gdzie RA mam wysokie, wchodzą w grę piwa o kolorze ciemny bursztyn oraz brązowe. Faktycznie, jak robiłem dunkelweizen oraz szkota, to pH trafiło w optimum.
    Żeby nie było za łatwo. Kolor piwa trudno ‘trafić’, do tego potrzeba trochę praktyki i doświadczenia. Nawet jeśli kalkulator podał konkretną wartość, nie zawsze taki kolor wyjdzie. Są różne słodownie, różne partie słodu. Słody ciemne mają szeroki zakres widełek koloru podawanego przez producenta. Dlatego nie męcz się z trafieniem koloru w punkt, zawsze możesz dokonać małej korekty kwasem. Przy małej odchyłce uzyskanego koloru od zamierzonego i tak najczęściej trafisz w optymalny przedział pH.
     
    Wartość RA łatwo wyznaczyć posługując się nomogramem zaproponowanym przez Johna Palmera w Książce How To Brew [3]. Zamiast liczyć, można rysować. Nomogram również pomoże w doborze koloru piwa i modyfikacji wody pod konkretny kolor.
     
    Bezpośredni link do nomogramu (PDF). Drukuj bez dostosowania lub w skali, bo inaczej może nie wyjść. Wygląda to tak:
     

     
    Kilka słów wyjaśnień. Wszystkie wartości, które otrzymasz musisz przeliczyć na odpowiednik CaCO3 (wyjątek alkaliczność, która może być jako HCO3). Kolorem jasno niebieskim są oznaczone widełki, jakie woda przeznaczona do warzenia powinna mieć. Są to wartości zalecane, nie obligatoryjne. Przykładowo historyczna woda pilzneńska wg literatury ma około 10 ppm wapnia i piwa jakoś wychodzą. Obecnie przy warzeniu pilsa dobre browary biorą poprawkę ze względu na jakość współczesnych słodów.
    Pokaże na przykładzie: Raport wody w jednostkach przeliczonych na ppm jako CaCO3 wygląda tak: wapń: 70, magnez: 15, całkowita alkaliczność: 48.
    Oznaczam wapń, magnez oraz alkaliczności na odpowiednich osiach nomogramu. Następnie rysuję linię od punktu wapnia do magnezu. Linia ta przetnie linię efektywnej twardości wody, punkt przecięcia uwzględnia już wpływ wapnia i magnezu. Rysuję kolejną linię od punktu przecięcia poprzez punk całkowitej alkaliczności. W efekcie przeciąłem linię RA i tym samym wyznaczyłem jej wartość. Na górze ponad wartością masz orientacyjne kolory piwa, które pasują do RA. Tak wygląda to w praktyce:
     

     
    Linia niebieska przecina wartość magnezu oraz wapnia odczytane z raportu wody, lub zmierzone testami. Prowadzę linię zieloną od punktu przecięcia efektywnej twardości poprzez całkowitą alkaliczność aż do przecięcia osi RA. Spoglądam w górę nad punktem i widzę, że optymalnie będzie jasne piwa do delikatnie bursztynowych. Mogę też wartość RA podstawić do wzoru SRM i mieć konkretną wartość. Jeżeli zechcę uwarzyć piwo ciemniejsze, to mogę do wody dodać kredy. Wtedy wzrośnie mi alkaliczność wody oraz ilość wapnia. O ile? Cóż mogę to obliczyć (rozwiązanie dla nerdów), zmierzyć po fakcie (rozwiązanie dla hazardzistów). Wystartować od zera, czyli użyć wody destylowanej lub RO. Mogę też posłużyć się pomiarem przed dodaniem czegokolwiek a następnie kalkulatorem. Jeżeli masz dokładny raport wody, to może on zastąpić pomiar.
    Podsumowując, formuła: SRM = 0.14 * RA (jako CaCO3) + 5.2 łączy w sobie wiele procesów chemicznych zachodzących podczas warzenia z kolorem piwa. Jeżeli wyznaczysz alkaliczność rezydualną, to będziesz widział w jaki kolor piwa celować, by pH zacieru było bliskie optimum. Trudnością jest trafienie z kolorem, ale w tym pomaga praktyka oraz większość programów do układania receptur. Warzenie piwa w jednym kolorze, mimo że dobrego, szybko się znudzi. Czas zacząć modyfikować wodę, by warzyć dowolne piwo i trzymać pH zacieru w optimum.
     
    7. Modyfikacja wody
     
    Dostosowanie składu wody nie jest trudne. Podstawiasz dane w kalkulatorze i masz wyniki. Mówię jak najbardziej serio. Zachęcam do korzystania z kalkulatora online lub wbudowanego w Twój ulubiony program.
     
    Jeżeli jednak chcesz poznać, co znajduje się pod maską kalkulatorów, to zapraszam do dalszego czytania. Już wspominałem, że w naturze trudno jest spotkać wolne atomy. Raczej są to cząsteczki. Dodając je do wody dysocjują i rozpuszczają się. Do wody dodajemy sole mineralne aby podnieść poziomy wybranych jonów. Po dodaniu, nie można już ich usunąć w prosty sposób. Dlatego woda przygotowywana jest w dwóch etapach - mówię ciągle o piwowarstwie domowym. Na wstępie jest zmiękczana, spada twardość i alkaliczność do takiego poziomu, z którego za pomocą minerałów można zbudować pożądany profil. Żeby było trudniej, najczęściej wodę do zacierania traktuje się inaczej jak tą do wysładzania. Woda, którą będziesz wysładzał powinna być odpowiednio miękka, mało alkaliczna i najlepiej jakby potraktować ją kwasem aby obniżyć pH do poziomu około 5.5. Taki odczyn nie będzie płukał garbników. Jeżeli woda do wysładzania będzie mocno alkaliczna i będzie zawierała dużo wapna i miała wysokie pH, to nie dość, że wypłukasz sporo garbników, które powodują szorstkość odbioru piwa i ściąganie w ustach, to do piwa przedostanie się dużo wapnia. Ten może powodować mętność piwa, w skrajnych przypadkach gushing (tworzy małe kryształki ze szczawianami, super nukleatory pozwalające CO2 szybko przejść z postaci rozpuszczonej do lotnej). Dodatkowo bufor mocno alkalicznej wody będzie zapobiegał dalszemu spadkowi pH, to podnosi trochę ryzyko infekcji. Niższe pH jest środowiskiem mniej przyjaznym mikrobom.
     
    Wstępne przygotowanie wody
    Najłatwiej i najrozsądniej zacząć od zera, czyli użyć wody pozbawionej soli. Możesz taką kupić w sklepie jako wodę demineralizowaną lub zakupić system RO. Z tego podejścia korzysta Tibek. Używa małego systemu odwróconej osmozy RO3. Woda z takiego systemu jest porównywalna z destylowaną. Czysta woda, czy to z RO, czy też demineralizowana zakupiona w sklepie wymaga dodania wszystkich potrzebnych soli.
    Niewątpliwą zaletą tego podejścia jest start, od tego samego poziomu, czyli od zera. Nie martwisz się raportami wody. Jednakże nie ma róży bez kolców. Na wstępie trzeba trochę wydać. Zakup systemu RO, to wydatek przynajmniej 150 zł (z kosztami przesyłki, oraz potrzebnymi przyłączami). Potem dochodzi wymiana filtrów, raz na pół roku. Co kilka lat trzeba wymienić membranę. Jeżeli zamierzasz modyfikować wodę i warzysz 10 standardowych warek w roku, to po około 2 latach RO będzie bardziej opłacalne jak kupowanie najtańszej wody demineralizowanej. Oprócz aspektu finansowego jest również wygoda, a to przemawia za RO. Myślę, że jak zapytacie tibka to podpowie i doradzi co kupić.
     
    Dygresja: Jeżeli zdecydujesz się na zakup systemu RO (reverse osmosis, odwrócona osmoza) to zwracaj uwagę na współczynnik GPD. Zerknij tutaj aby dowiedzieć się więcej i policzyć czy Ci się to opłaca. Do celów piwowarskich wystarczy system RO3 75GPD. W zależności od ciśnienia w instalacji wodnej wytworzy około 3-4 litrów czystej wody na godzinę. Tanie systemy RO używają ciśnienia sieci wodnej do podtrzymywania zjawiska. Oznacza to, że na każdy wyprodukowany litr wody czystej zużyją kilka litrów wody, traktowanej jako odpad. Mimo tego koszt wyprodukowania wody przez system RO jest tańszy jak zakup w hipermarkecie.
     
    Drugim sposobem wstępnego przygotowania wody jest gotowanie. Gotowanie pozwala pozbyć się alkaliczności przemijającej. Wysoka temperatura redukuje ilość rozpuszczonego dwutlenku węgla. To zaburza równowagę układu węglanowego. Odczyn pH wody podnosi się a część węglanów strąca się jako osad sedymentując na dnie. Po przegotowaniu, wodę należy ostudzić i zdekantować, pozostawiając osad na dnie. Kosztem czasu i energii masz bardziej miękką wodę. Z tym podejściem wiąże się jeszcze jeden problem. Jak określić spadek twardości i alkaliczność? Możesz posiłkować się tabelą i próbować szacować.

     
    Z bardzo małej praktyki powiem Ci, że gotowanie wody jest uciążliwe. Trwa długo, trzeba potem delikatnie odbierać do kolejnego naczynia. Za to niewątpliwą zaletą jest bardzo szybkie pozbycie się chloru i jego lotnych związków podczas gotowania.
    Po przegotowaniu, zamiast szacować można również sprawdzić parametry. W tym celu najlepiej udać się do sklepu zoologicznego i kupić kropelkowe testy wody. Będziesz potrzebować dwóch. Pierwszy, to test KH-GH a drugi to Ca-Mg. Test KH mierzy twardość węglanową, test GH całkowitą. Test Ca wyznacza ilość wapnia, Mg magnezu. Testy te najczęściej podają wynik w stopniach niemieckich (°d). Trzeba je przeliczyć na mg/l jako CaCO3. Przeczylicznik jest prosty, wynik mnożysz przez 17.8.
    Testy kropelkowe działają na zasadzie liczenia kropli dodawanych do wody. Opiszę to na przykładzie testu KH. Woda, jak już wcześniej powiedziałem, to środowisko buforujące. Opiera się przed zmianą pH do momentu, aż bufor się przepełni. Dodając powoli kropelki testera zmniejszasz pojemność bufora. Liczysz kropla po kropli delikatnie mieszając. W pewnym momencie bufor się przepełni i ta ostatnia kropla zmieni kolor roztworu. Ilość dodanych kropli, to wynik w stopniach niemieckich. Załóżmy, że dodałem 5 kropli i woda się zabarwiła. Następnie mnożąc wynik przez 17.8 otrzymując wynik około 90. Jest to całkowita alkaliczność wyrażona w ppm jako CaCO3 (mg/l jako CaCO3).
    Testy kropelkowe w zależności od producenta i Twojej wody wystarczą na 10-20 pomiarów. Przy przechowywaniu ich w lodówce i ograniczeniu do kontrolnego pomiaru raz na kwartał wystarczą na kilka lat. Koszt zakupu obu, to około 65 zł. Zerknij tutaj aby zobaczyć jak wygląda używanie testów kropelkowych w praktyce.

     
    Dygresja: Raporty wody, które publikują stacje uzdatniania, są wykonywane zanim woda trafi do miejskiego wodociągu, a do kranu są jeszcze kilometry. Po drodze może zmienić swoje parametry. Testy kropelkowe najczęściej wskazują trochę większą wartość jeżeli chodzi o twardość i alkaliczność, tak samo jeśli chodzi o wapń. Woda płynie rurami pod większym ciśnieniem i potrafi jeszcze rozpuścić to co napotka po drodze. Im starsza instalacja, tym więcej soli i węglanów ma szansę dodatkowo się rozpuścić. To dobry powód, dla którego warto zakupić testy jeżeli nie masz systemu RO.
    Raporty wody również często pomijają alkaliczność wody, podając tylko całkowitą twardość. Rzadko jest wymieniony wapń i magnez jako oddzielna rubryka. Wtedy wypada zadzwonić albo napisać maila z prośbą o więcej danych. Możesz też próbować szacować, ale to już wybiega poza ramy tego artykułu.
     
    Trzecia możliwość, to rozcieńczenie. Ma tę przewagę nad gotowaniem, że jest o wiele szybsze i rozcieńcza wszystko w równych proporcjach. Minusem jest koszt, bo baniak 5 litrowej wody kosztuje około 3 zł. Ekonomiczność tego podejścia mocno zależy od Twojej wody. U mnie niestety czasem przy jasnych piwach muszę użyć kilku baniaków. W tej metodzie również przydadzą się testy kropelkowe, chyba że masz pełny raport wody. W swojej skromnej praktyce modyfikacji wody stosuję głównie tę metodę. W najbliższym czasie noszę się z zakupem taniego systemu RO3 głównie ze względu na wygodę.
     
    Powyższe metody nie są jedynymi. Są jeszcze inne techniki i narzędzia na zmiękczenie, zmniejszenie alkaliczności, zmianę proporcji minerałów. Przykładowo, możesz użyć wapna gaszonego, wymienników jonowych, natlenienia, nagazowania CO2 pod ciśnieniem. Chcesz dowiedzieć się więcej? sięgnij po [1].
     
    Masz już przygotowaną wodę. Wybrałeś sobie profil, chociażby w tym miejscu (CaCO3 = HCO3- * 0.82). Czas teraz poznać czym można tą wodę zmodyfikować.
     
    Kwasy
    Rozpocznę od modyfikacji, którą stosowałem jako pierwszą i przez bardzo długi czas. Jest to dostosowanie pH wody za pomocą kwasu. Do tego celu przydatny jest pomiar, do pomiaru służą paski, a jeszcze lepiej phmetr.
     
    Phmetr
    Początkowo wystarczały mi paski, które z czasem zamieniłem na tani phmetr. Wydatek około 35 zł z kosztami przesyłki i to w polskiej dystrybucji.
     

     
    W opakowaniu oprócz urządzenia są dwie saszetki z buforem służące do kalibracji. Rozrabiasz je w oddzielnych naczyniach wg instrukcji i zanurzasz sondę. Następnie powoli nastawiasz śrubę kalibrującą. W obu roztworach musi wskazywać wartość odpowiadającą pH odczytaną z opakowania. Rozrobione bufory możesz przechowywać w szczelnie zamkniętych słoikach kilka miesięcy. Potem trzeba je zmienić na nowe.
     
    Dygresja: W tanich modelach, takich jak ten ze zdjęcia producent podaje, że po pomiarze pH sondę wystarczy przepłukać w wodzie demineralizowanej, zamknąć urządzenie i odłożyć. W ten sposób zniszczyłem swój pierwszy phmetr po kilku miesiącach prawdopodobnie uszkadzając sondę. Teraz robię inaczej. Sondę po pomiarze przepłukuję wodą demineralizowaną i przechowuję w roztworze KCl, najczęściej źródła podają roztwór 3 molowy (~22,5g w 100 ml roztworu), inne roztwór 1 molowy (producent powinien to wyszczególnić w instrukcji). Ważne jest aby sonda była w roztworze takiego elektrolitu wtedy membrana w niej zawarta nie wysycha. W zatyczce urządzenia jest miejsce na około 2 ml roztworu, w ten sposób sonda jest stale zanurzona i nie wysycha. Raz na jakiś czas, niestety, trzeba wymienić roztwór w zatyczce, bo powoli odparowywuje zostawiając trochę soli jako nalot. Nalot rozpuszcza się w ciepłej wodzie. Po każdym użyciu urządzenia, wstrzykuję świeży roztwór do zatyczki. Pamiętaj, aby z płynem w zatyczce phmetr trzymać pionowo, inaczej płyn się wyleje. Tak przechowywane urządzenie dłużej trzyma kalibrację.
     
    Mój model ma napis ATC na obudowie, funkcja kompensacji temperatur, z kórej przy pierwszym podejściu korzystałem nie tak jak trzeba. Jeżeli chcesz aby urządzenie długo Ci służyło, to moja rada jest taka: zawsze należy mierzyć próbki schłodzone do temperatury pokojowej. Nie wciskaj też phmetru w zacier, szybko się uszkodzi, odbieraj rzadką część, schłódź próbkę i dopiero po tym dokonuj pomiaru. Współczynnik pH zależny jest od temperatury, mierząc go w gorącym zacierze dostaniesz przekłamany wynik. Jak mocno? odpowiedź na to pytanie znajdziesz w [1]. Przypominam, pierwszy pomiar zacieru wykonujesz po około 15 minutach. Sam pomiar jest prosty. Włączasz urządzenie. Zanurzasz sondę i czekasz kilka sekund, aż pomiar się ustabilizuje, odczytujesz wynik i na jego podstawie decydujesz co dalej.
     
    Zakwaszanie wody
     
    Zakwaszanie jest łatwe, tanie i skuteczne. W piwowarstwie domowym używa się najczęściej kwasu fosforowego V (ortofosforowego) lub mlekowego. Z zachowaniem zasad bezpieczeństwa - w końcu to stężone kwasy. Powoli dodajesz kwas, zacznij od ilości 1ml, dokładnie mieszasz aby się rozpuścił i dokonujesz pomiaru. Powtarzasz iteracyjnie do momentu uzyskania wyniku. Kwasu możesz dodawać zarówno do zacieru jak i do wody przeznaczonej na wysładzanie. Używam kwasu fosforowego 75%, dozuję go strzykawką. Jeżeli odpowiednio zmodyfikowałem wodę, to korekta brzeczki najczęściej nie jest potrzebna. W innym przypadku wszystko zależy od alkaliczności Twojej wody. Możesz zużyć nawet kilka mililitrów. W przypadku wody do wysładzania wszystko zależy od alkaliczności. Może to również być kilka mililitrów, ciągle mówię o standardowych 20 litrowych warkach. Zatem dodawaj po 0.5 - 1 ml, mieszaj i sprawdzaj wynik. Kwas mlekowy, jest kwasem silniejszym od fosforowego. Dodaje się go w mniejszych ilościach. Zaletą kwasu mlekowego jest to, że pozwala robić piwa zakwaszane. Po rozcieńczeniu jest przyjemny w smaku w porównaniu do fosforowego. Nie muszę chyba mówić, że te roztwory muszą być trzymane w bezpiecznym miejscu z dala od dzieci. Stężenia kwasów są podane wagowo a nie objętościowo. Więc 1 gram kwasu 75% nie jest tym samym co 1 ml. Kwas fosforowy jest gęstszy od mlekowego i oba są gęstsze od wody. Zatem objętość ich będzie mniejsza aniżeli waga.


     
    Jony, aniony, kationy, będą z tego związki
     
    Zapewne zauważyłeś, że wszystko co do tej pory napisałem powyżej ma wpływ na wydajność i komfort pracy enzymów. Jednakże modyfikacja wody to również i smak. Krótka charakterystyka części jonów (po więcej, sięgnij koniecznie do [1]):
    Wapń (Ca2+). Zalecany poziom 50 - 200 ppm. Palmer nazywa go przyjacielem piwowara. Główny jon reagujący z fosforanami ze słodu powodujący spadek pH. Stabilizuje pracę enzymów. Wspomaga koagulację białek, wytrącanie się osadu i szczawianów. Ma również wpływ na metabolizm drożdży. Jeżeli warzysz w kociołku automatycznym, pomyśl nad dodaniem wapnia w procesie gotowania. W przypadku systemu gdzie wysładza się wodą, to przedostanie się go wystarczająco dużo do kadzi warzelnej. W przypadku kociołków, gdzie jest ciągła cyrkulacja, poziom wapnia może (nie musi) być bardzo niski, co może skutkować mętniejszym piwem lub gorszą fermentacją. Wapno ma wysoki próg wyczuwalności, nie uzyskasz raczej takiego poziomu na wodzie z kranu. W przypadku bardzo dużych stężeń smakuje trochę jak woda mineralna. Magnez (Mg2+). Zalecany poziom 0 - 40 ppm. Podobnie jak wapń, ma wpływ na obniżenie pH zacieru. Drożdże potrzebują około 5 ppm magnezu, taka ilość jest zawarta w słodzie, stąd woda może go nie mieć zupełnie. Niektóre style piwa wymagają go trochę więcej, są to głównie piwa mocno chmielone. Od stężenia 125 ppm wykazuje właściwości przeczyszczające. Powyżej 40 ppm, może być odbierany jako nieprzyjemny kwaśno-gorzki smak. Sód (Na+). Najczęściej są to jony wprowadzone przez przydomowe zmiękczacze wody. Woda zmiękczona sodem nie jest najlepszym wyborem w piwowarstwie. W małych stężeniach, poniżej 150 ppm może podnosić odczucie pełni. Ale jeżeli w wodzie pojawi się duże stężenie chlorków to mamy NaCl, czyli sól kuchenną i smak słony. Palmer podaje, aby ilość sodu nie przekraczała 100 ppm. Siarczany (SO42-). Przykładowo siarczan wapnia CaSO4, czy magnezu MgSO4. Ich zwiększona ilość odpowiada za jakość goryczki, robiąc ją bardziej stanowczą i wytrawną. W przypadku zbyt dużej ilości siarczanów smak piwa może stać się lekko mineralny. W przypadku stężenia 200-400 ppm odpowiada za wydłużenie czasu kiedy odczujesz chmielowość. Palmer również podaje, że browary niemieckie jak i czeskie, unikają dużych stężeń siarczanów, bo rujnują smak szlachetnych chmieli kontynentalnych. Chlorki (Cl-). W przypadku wody, są to związki metali z chlorem, przykładowo: chlorek wapnia CaCl2, chlorek cynku ZnCl. Lotne związki chloru powinny zostać z wody całkowicie usunięte. Albo w sposób chemiczny, albo poprzez odstanie przez kilka godzin, albo poprzez przygotowanie. Ilość chlorków nie powinna przekraczać 200 ppm. Odpowiadają za odczucie słodowości i pełni piwa. W dużych stężeniach mogą mieć negatywny wpływ na sprzęt, zwłaszcza wykonany ze stali nierdzewnej. Proporcja chlorków do siarczanów. Chlorki z siarczanami to duet smakowy. W teorii ważna jest ich proporcja. W praktyce czasem wychodzi inaczej. Aby poczuć w smaku wpływu tej proporcji, to ilość chlorków powinna być w zakresie 50 - 200 ppm, a siarczanów 50 - 500 ppm. W przypadku piw słodowych, siarczanów powinno być mało a chlorków kilka razy więcej. Piwa z umiarkowanym chmieleniem, dobrze sprawdzają się blisko równych proporcji. Jeżeli bardziej zależy Ci na wyciągnięciu chmielu, wtedy zwiększasz ilość siarczanów.  
    Dygresja: Proporcje i ich dobór wyjdzie z czasem i praktyką, nie czuję się kompetentny, by doradzać konkretne poziomy. Sam patrzę na tą proporcję trochę przez palce. Przykładowo, lubię nie do końca stylowe AIPA, gdzie przewaga chlorków nad siarczanami jest znaczna, przynajmniej 2:1. Zupełnie inaczej, jak podaje literatura i przykłady niektórych świetnych piw.
     
    W naturze bardzo rzadko występują wolne jony. Kationy wapnia Ca2+ i magnezu Mg2+ w naszym przypadku związane są z kationami czy to w postaci chlorków, siarczanów czy też węglanów. Natura tak chciała i nie ma dyskusji. Zatem modyfikując wodę będziesz dostawał zarówno kationy jak i aniony. A to wymaga już lekkich obliczeń, które wykona za Ciebie kalkulator. Nie będę tego powtarzał, ponieważ nasza wiki opisuje w bardzo dobry sposób modyfikację wody. Poniżej przedstawię najczęściej używane modyfikatory, nazwy będą potrzebne w jednym przykładzie przy użyciu kalkulatora.
    Gips piwowarski, siarczan wapnia (CaSO4 · 2H2O). Wprowadza wapń oraz siarczany. Często stosowany przy warzeniu piw chmielowych. Kupujemy go w postaci proszku, mimo tego jest uwodniony. Czyli w strukturze posiada cząsteczki wody. Oznacza to, że przy przeliczeniu proporcji również musisz tę wodę uwzględnić. Kalkulatory zakładają, że dodajesz właśnie taką postać gipsu. Są jeszcze odmiany bardziej uwodnione (wtedy nie powinny nazywać się gipsem, sklepy piszą różnie). W takim przypadku kalkulatory źle podadzą ilości. Zatem zwracaj uwagę aby kupić dwuwodny, czyli gips. Chlorek wapnia (CaCl2). Wprowadza wapń oraz chlorki. Stosowany jako modyfikator w stylach słodowych. Sól kuchenna, chlorek sodu (NaCl). Wprowadza jony sodu oraz chlorki. Stosowana relatywnie rzadko (chyba, że mówimy o specjalnych piwach jak gose). Jest dobrym wyborem, jeżeli masz nisko sodową wodę i chcesz podbić słodowość. Kreda, węglan wapnia (CaCO3). Wprowadza wapń i powoduje, że woda staje się alkaliczna. Węglan wapnia ma bardzo małą rozpuszczalność. Warto go dodać na  kilka godzin przed warzeniem, aby miał szansę lepiej się rozpuścić. Jego rozpuszczalność zwiększa dwutlenek węgla. Soda, wodorowęglan sodu (NaHCO3). Wprowadza sód i trochę alkaliczności. Stosowana raczej rzadko. Chlorek magnezu (MgCl2 · 6H2O). Wprowadza magnez i chlorki. Jest dość rzadko stosowany, ponieważ ilość magnezu w wodzie powinna być niska. Sprzedawany najczęściej w postaci uwodnionej. Sól gorzka, zwana solą epsom. Siarczan magnezu, (MgSO4 · 7H2O). Jako, że w wodzie stężenie magnezu nie powinno przekraczać 40 ppm, to jest stosowana bardzo rzadko. Wprowadza siarczki i magnez. Jest sprzedawana w postaci siedmiowodnej. Znowu trzeba brać to pod uwagę w obliczeniach. Dodawana jest czasem do wytrawnych nowofalowych IPA.  
    Powyższe związki są tanie i bardzo trwałe pod warunkiem poprawnego przechowywania, czyli szczelnie zamknięte, bez wilgoci i w ciemnym miejscu. Jednakże miej na uwadze to, że jak sypiesz jedną łyżeczkę gipsu, to nie oznacza, że połowa tej łyżeczki to wapń a druga siarczany. Związki składają się z atomów, które mają różne wagi. Aby policzyć ile wagowo znajduje się konkretnego jonu trzeba sięgnąć do tablicy okresowej pierwiastków. Wzór rozkładasz na atomy i przypisujesz im wagę. W gipsie dwuwodnym zawarte są:
    Ca ~ 40u,
    S ~ 32u,
    O ~ 16u,
    H ~ 1u.
     
    Jednostka ‘u’ jest do pominięcia, ważna jest relatywna różnica w wadze, to pozwoli wyliczyć procentowy udział. Wiem, że jesteś ciekawy u = 1,66 * 10-24 g.
     
    Przykład: na łyżeczce jest 3 gramy gipsu. Zapis chemiczny wygląda tak: CaSO4 · 2H2O. Ważna uwaga, musi to być prawidłowy zapis stechiometryczny.
    Woda to: 2 atomy wodoru (H), jeden tlenu (O). Obliczenia: 2 * 1u + 16u = 18u.
    Siarczan wapnia to: 1 atom wapnia (Ca), 1 siarki (S), 4 tlenu (O). Obliczenia: 40u + 32u + 4 * 16u = 136u. 
    Dwuwodna cząsteczka gipsu łącznie waży: 136u +  2 * 18 u = 172u.
    Wagowo woda stanowi około 21% (36/172 * 100%), zatem waży 3g * 0,21 = 0,63g.
    W nabranych 3 gramach gipsu jest 3g - 0.63g = 2.37g czystego siarczanu wapnia.
    Siarczan (SO4) waży 32u + 4*16u = 96u.
    Procentowo stanowi: 96/172 * 100% = 56%.
    Zatem siarczanów jest 2.37g * 0,56 ~= 1.33g.
    Wapnia w takim razie jest 2.37g - 1.33g ~= 1g.
    Ile to będzie mg/l czy też ppm? Aby to obliczyć bierzesz poszczególne wagi i dzielisz przez objętość wody. Morał z tego taki, że siarczan wapnia wagowo bardziej podnosi siarczany niż wapń. Tak właśnie wyglądają obliczenia kalkulatorów wody. Czas przyjrzeć się jednemu, a konkretnie kalkulatorowi od Brewers Friends. Zapoznaj się również z metodologią zamieszczoną pod rubrykami kalkulatora. Dowiesz się jak architekci podeszli do tematu i na czym bazowali.
     
    Kolejny przykład, tak będzie najprościej. Warzę dry stout. Celuję w około 19 litrów idealnie, aby przelać potem do kega typu cornelius. Drożdże wybiorę silnie flokulujące, mało chmielu, więc strat będzie niewiele. Użyję 4 kilogramów słodu, słód mi uwięzi około 4 litrów wody. Następnie gotowanie, odparuje około 4 litrów. Mało chmielu, więc 3 litry to będą straty. Ostatecznie potrzebuję 19 + 4 + 4 + 3 = 30 litrów wody. Będę zacierał w proporcji 4:1, więc do kotła warzelnego idzie 16 litrów wody, reszta czyli 14 litrów do wysładzania.
    Kalkulator pozwala mi zacząć od pełnego raportu wody lub od najprostszego, bazującego tylko na twardości ogólnej, alkaliczności oraz pH. Te trzy parametry wystarczą aby oszacować ile i jakich jonów jest w wodzie pitnej, bo stężenia określonych grup jonów wykazują właściwości korelacyjne (kolejny raz zapraszam aby sięgnąć do [1] lub [2]). Mój raport wody nie zawiera nic o alkaliczności, zatem kupiłem w sklepie zoologicznym test KH-GH. Wyszło mi, już po przeliczeniu na ppm jako CaCO3, że twardość całkowita GH wynosi około 370 ppm jako CaCO3, a alkaliczność KH 230 ppm jako CaCO3
     
    Wybór stylu piwa nie był przypadkowy. Mam wodę alkaliczną i twardą. Dobra do piw raczej ciemniejszych, będzie mniej pracy. Jako profil docelowy wybrałem Dublin (Dry Stout). Korzystam z uproszczonego podejścia, nie będę przejmował się wszystkimi parametrami. Najważniejsze będzie osiągnięcie odpowiedniego poziomu alkaliczności oraz wapnia.
    Wodę do wysładzania będę rozcieńczał wodą demineralizowaną, więc tak naprawdę będą dwa źródła wody. Woda do warzenia - prosto z kranu. Pozwolę jej odstać noc aby pozbyć się lotnego chloru. Woda do wysładzania będzie rozcieńczona, więc ma inne parametry. Użyję 10 litrów wody demineralizowanej a brakującą część dopełnię kranówką. Chcę uzyskać wodę miękką, mało alkaliczną. Zatem rozcieńczenie wynosi około 70%. O tyle samo spadnie twardość i alkaliczność rozcieńczonej wody z kranu. Wartości wody do wysładzania to: GH = 110, KH = 70.
    Mam już wszystko. Profil wody możesz znaleźć pod tym linkiem. Lub używając kodu: JBBLGXV.
     
    Krok po kroku, jak wyglądał proces obliczeń w celu dostosowania wody.

    Przestawiłem się na jednostki z układu SI. Wyszło mi, że potrzebuję 30 litrów wody. Woda do zacierania 16 litrów, do wysładzania 14 litrów. Będę używał innej wody w obu procesach.
     

    Nie dysponowałem pełnym raportem. Ograniczyłem się do do pomiaru testem kropelkowym. Przeliczyłem ze stopni niemieckich na ppm jako CaCO3. Z pomiaru pH = 7.3.

    Warzę stouta, więc wybieram profil odpowiedni do stylu. Wybór uzupełnił mi wartości docelowe. Zamiast konkretnego wyboru możesz tam wpisać własne wartości, w które celujesz. Teraz cała trudność, trzeba tak dobrać sole i węglany, aby trafić jak najbliżej wartości docelowej. Delta powinna być jak najbliżej 0. Wartości zielone oznaczają, że jest dobrze. Tak jak mówiłem wcześniej: wartości magnezu oraz siarczanów są wyliczone w sposób przybliżony. Nie przejmuję się nimi. Wartość siarczanów odbiega do 53, jest na progu wyczuwalności. Nie chciałem rozcieńczać wody do zacierania, więc godzę się na lekkie odchylenie. Z wapnem i alkalicznością trafiłem tak jak trzeba. Wybrałem kredę do modyfikacji, bo zawiera oba jony, których mi brakuje. Kredy wyszło: 6.5 g. Wodę warto przygotować dzień przed warzeniem i kredę w niej rozpuścić, co jakiś czas mieszając, niestety podobnie jak węglan wapnia nie rozpuszcza się natychmiast. Brakowało trochę chlorków i sodu. Jony te zawiera sól kuchenna. Wystarczył 1 gram soli. Woda do warzenia gotowa. Czas na wysładzanie.

    Woda była rozcieńczona. Wpisałem wartości, które obliczyłem wcześniej.

     

    Woda miała za duże pH więc użyłem kwasu fosforowego V by ją zakwasić. Mam kwas 75%, więc taki ustawiłem. Kalkulator mi podpowiedział ile go potrzeba, przepisałem tę wartość. Docelowa była ustawiona na 5.4, nie ruszałem. Zaznaczyłem opcję, aby kalkulator uwzględnił powyższe wartości. Nic tylko warzyć.
     
    Jeżeli będziesz zaczynał od wody RO, to w uproszczonym raporcie wpisujesz wartość 0 dla KH i GH. Woda demineralizowana i RO nie będzie miała pH równego 7. Dlatego, że jest w niej trochę rozpuszczonego CO2, co za tym idzie będzie tam kwas węglowy. Zatem pH będzie poniżej 7. Jest to powód, dla którego woda demineralizowana nie nadaje się do kalibracji phmetrów.
     
    Zakończenie
     
    Jeżeli dotrwałeś do tego momentu i jeszcze nie śpisz, to jestem pełen podziwu. Dowiedziałeś się podstaw dotyczących wody w piwowarstwie domowym. Głównie w aspekcie wydajności. Chociaż też pojawiło się kilka zdań o wpływie składu wody na smak. Warto abyś teraz sięgnął po pozycję [1] i zobaczył, że temat ten jest trochę szerszy. Z pozycji [1] również dowiesz się, jak przygotowują i modyfikują wodę duzi gracze. Dlaczego wymienniki jonowe stosowane przez koncerny nie są takie złe. Co daje napowietrzanie wody, a co przepuszczanie dwutlenku węgla pod wysokim ciśnieniem. Jak działają bufory słodów i wiele innych ciekawych informacji.
    Mam cichą nadzieję, że powyższy artykuł przyczyni się do podniesienia wydajności w Twoim domowym browarze. Zużyjesz mniej energii i słodu. Będziesz nosił mniejsze ciężary a Twoje piwo stanie się jeszcze lepsze. Sam proces modyfikacji nie jest skomplikowany, zwłaszcza że wiesz już co w tej wodzie się dzieje.
    Dziękuję serdecznie recenzentom. Proszę kierujcie trudne pytania właśnie do nich ;). Dziękuję również Tobie, za poświęcony czas i do zobaczenia w następnym artykule.
     
     
     
    Na prośbę forumowiczów zamieszczam dodatkowo dokument w formacie PDF z powyższym artykułem. Możesz go pobrać tutaj: O wodzie w browarze domowym, bez lania wody .pdf.
     
     
     
    Możesz być zainteresowany również:
    Bank drożdży piwowarskich w domowych warunkach Odzyskiwanie drożdży z piwa niepasteryzowanego Skuteczność popularnych środków dezynfekujących na brettanomyces StarSan, tani i skuteczny środek dezynfekujący Wyjaśnienie jak działają enzymy podczas zacierania Cukier kandyzowany domowej produkcji Kilka słów o namnażaniu drożdży w starterze Jak długo przechowywać gęstwę Rehydracja drożdży suchych, temperatura ma znaczenie Prosty sposób na tanie i szybkie chłodzenie brzeczki latem Nie samym piwem człowiek żyje, czyli chmielona woda na upalne dni Zrób to sam, czyli jak wykonać mieszadło magnetyczne posiadając dwie lewe ręce  
    Jeżeli zauważyłeś błąd to proszę zgłoś go jako prywatną wiadomość, by nie robić off-topu w komentarzach. Poprawię z adnotacją. Jeżeli błąd wymaga dyskusji, oczywiście komentuj.
  3. Super!
    DanielN przyznał(a) reputację dla witur w [WODA] Profile, modyfikacje, odwrócona osmoza itp.   
    Dzięki za wyczerpującą odpowiedź , właśnie próbuję rozgryźć ten kalkulator    
  4. Dzięki!
    DanielN otrzymał(a) reputację od witur w [WODA] Profile, modyfikacje, odwrócona osmoza itp.   
    Jakiś czas temu napisałem jak się nim posługiwać. Opis jest bliżej końca tego wpisu.
  5. Dzięki!
    DanielN otrzymał(a) reputację od witur w [WODA] Profile, modyfikacje, odwrócona osmoza itp.   
    @witur powyżej @anatom dał Ci link do kalkulatora. Ze swojej strony mogę Ci powiedzieć, że masz wodę średnio twardą, jak obniżysz 1 stopnień, to będzie to górna granica wody miękkiej. Twardość węglanowa KH, jest na podobnym poziomie, co przy wodzie spożywczej/pitnej jest normalne. Ta woda w zasadzie nie będzie wymagała zakwaszania do piw jasnych i bursztynowo-jasnych. Przy takich piwach współczynnik pH zacieru powinien Ci wpadać w optimum. Przy piwach bardzo jasnych, można się pokusić o lekkie rozcieńczenie wodą demineralizowaną. Twoja woda jest dość łatwa w modyfikacji. Kalkulator, który podlinkował @anatom wyliczył, że masz trochę powyżej 50 mg/l wapnia, więc jest super również do wysładzania, co najwyżej do tego celu dodać małej korekty kwasem (ale to już sobie policzysz kalkulatorem).

    I na koniec. Wartości, które wyliczył kalkulator są tylko przybliżeniem, bo na podstawie KH i GH nie jesteś w stanie wyliczyć określić jednoznacznie ile wapnia i magnezu jest w wodzie. W pełnym raporcie te wartości mogą lekko odbiegać od wyliczonych, wg mnie nie takie odchyłki nie mają praktycznie żadnego znaczenia. Jeżeli w przyszłości zechcesz modyfikować wodę pod konkretne style (a najlepiej pod swoje upodobania), to możesz założyć, że chlorki i siarczany też są na niskim poziomie. Rzadko się zdarza, by przy wodzie z wodociągów było inaczej.
  6. Super!
    DanielN otrzymał(a) reputację od tmk1 w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    @tmk1 zajrzyj do książki Water, tam temat wody jest opisany o wiele szerzej. Podane są też przykłady browarów, które traktują wodę bardzo poważnie. W dużej mierze chodzi o oszczędności, bo odpowiednio dobrana woda obniża koszty poprzez zwiększenie wydajności (też to była przyczyna dlaczego zainteresowałem się tym tematem). Modyfikacja wody poprawia również jakość, co powinno przekładać się na na sprzedaż. Chociaż, już tak dygresyjnie, ta bardziej powiązana jest raczej z działaniami marketingowymi.
     
  7. Dzięki!
    DanielN przyznał(a) reputację dla tmk1 w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    Artykuł super napisany, fajnie i przyjemnie popołudnie przy kawie się spędzało czytając go, ale na pewno będę musiał wrócić do niego, żeby wszystko powoli przyswoić. Swoją drogą boje się pomyśleć co kryje się w stopniu zaawansowanym, skoro tutaj jak to @DanielN stwierdził, że są to podstawy ? Swoją drogą przy mój nomogram wygląda tak jak w załączeniu, więc najlepiej mi będzie warzyć piwa ciemne ?
     
     
     
    Jestem pod ogromnym wrażeniem.
     
     

  8. Super!
    DanielN przyznał(a) reputację dla anatom w [WODA] Profile, modyfikacje, odwrócona osmoza itp.   
    Wejdź na stronę https://www.brewersfriend.com/mash-chemistry-and-brewing-water-calculator/
    i tam w sekcji Source Water wybierz raport GH+KH
    Jeszcze musisz zmienić na stopnie niemieckie dH bo te wartości które podałeś chyba są w stopniach niemieckich właśnie 

  9. Dzięki!
    DanielN otrzymał(a) reputację od smola w Obsługa systemu Cornelius keg   
    @nike21 wyjątkowo nie zgodzę się z Tobą, oczywiście mogę się mylić. Jeżeli zostanie dobrane odpowiednie ciśnienie do temperatury piwa w kegu, to po pełnym rozpuszczeniu gazu w piwie nasycenie będzie bez zmian. To taka sama sytuacja jakbyśmy opróżnili keg do połowy i wrócili do niego po jakimś czasie. Jeżeli nie zmieniło się ciśnienie ustawione reduktorze i temperatura nie zmieniła się, to wysycenie też się nie zmieni.
     
    Zatem @smola możesz kegowac połowę. Jednakże trzeba zwrócić uwagę na przedmuchnie kega, bo nad piwem będzie dużo powietrza i zużyjesz sporo CO2, by się go pozbyć. Trzeba kilkukrotnie napełniać keg gazem i upuszczać zaworkiem. Jeżeli nie pozbędziesz się powietrza, to utlenienie będzie szybko wyczuwalne.
     
    Natomiast jeżeli używasz referemntacji, by wysycić piwo w kegu, to będzie Ci trudno pozbyć się powietrza z nad piwa. Przy pełnym kegu zawsze można kilka razy ruszyć piwo i się uwolni trochę CO2 i można wypchnąć zaworkiem. Przy połowie kega nie wiem czy to się uda. Też musisz użyć odpowiedniej ilości cukru, by zbudować takie ciśnienie (wynika to z prawa Henry'ego) by odpowiednia ilość dwutlenku węgla rozpuściła się w piwie. Do tego najlepiej użyć kalkulatora.
     
  10. Dzięki!
    DanielN przyznał(a) reputację dla Wuuu w Obsługa systemu Cornelius keg   
    Z powodzeniem kegowałem i gazowałem po 11-13 l piwa w 19l corneliusach, tak jak pisze @DanielN. Przy odpowiednim stałym ciśnieniu i stałej temperaturze w kegeratorze, gazowało się w punkt. Ale faktycznie może być to problem przy schładzarce i wymuszonym gazowaniu.
  11. Super!
    DanielN przyznał(a) reputację dla witur w White Labs - WLP090 San Diego Super   
    Pojawiła się lekka piana na powierzchni  i ciśnienie  się podniosło tak że chyba ruszyły do ataku .   Z gęstwy pewnie już rusza tak jak powinny   
  12. Dzięki!
    DanielN przyznał(a) reputację dla eneash w Bank drożdży piwowarskich w domowych warunkach 3/4 - mrożenie   
    Świetna trylogia, co prawda dopiero zaczynam ale ten sposób pracy pomału wdrażam. 
  13. Dzięki!
    DanielN przyznał(a) reputację dla Undeath w Mycie i Dezynfekcja. Najpopularniejsze środki chemiczne używane w piwowarstwie.   
    Ciekawa sprawa Panie chemik. Nie mów, że to mit bo kilka razy tego doświadczyłem -  kranówki dostaję co jakiś czas badania i poziom chloru w niej ma bardzo małe wahania. Na konkursach piwowarskich też sporo piw wadliwych przychodziło i po rozmowach z piwowarami wychodziło, że używali środków chlorowych. Oczywiście, że chlorowana woda może pomóc w tym, ale idzie złapać też od samego ClO2 aromat chlorofenolowy - sam nie raz płukałem nim gęstwy i jak źle wymierzyłem dawkę to potrafiło źle zapachnieć. ClO2 używałem przez jakieś 100 warek i mała praktykę z nim odbyłem - jest to bardzo dobry środek jednak dla mnie jego aromat dyskwalifikuje i raczej wolałbym płukać po nim wiadro co już robi go bezużytecznym do naszych celów.  Więc nie mów, że to mit bo dostępne w necie badania i deskryptory tego aromatu potwierdzają, że tak się dzieje.
     
     
     
    "No cóż, słyszałem o piwowarach domowych, którzy w ogóle nie dezynfekują sprzętu i naczyń i jakoś to działa." uśmiałem się XD bo co szwagrowi smakuje? To jest mit powielany od lat! Takie piwa potem lądują na spotkaniach piwowarów domowych i te osoby są zadziwione, że nikt ich piw nie chce pić bo są syf kiła i mogiła. Sprzed 2 tygodni mam taki właśnie przykład - znajomego Ojciec warzy już ładnych 5 lat piwa i bardzo chciał mi dać do spróbowania, bo wszyscy jego piwami się zachwycają. Okazało się że dezynfekcja wrzątkiem zaciąganie piwa gębą itp. Poprosiłem o jeszcze kilka butelek jego piw nie dlatego, że faktycznie dobre ale właśnie z cała paletą infekcji - od kapuchy kiszonej po apteczne nuty - będę miał na panele sensoryczne by pokazać właśnie do czego doprowadza brak jakiejkolwiek chemii w browarze. 
     
    Polecam wrócić jeszcze do artykułu z pierwszej strony, pisałem tam, że starsan to środek usuwający osady i zabrudzenia, na których bytują bakterie i sam w sobie to nie jest remedium na każdy problem - ale skuteczny utrwalacz już umytej powierzchni. Po za tym obniżenie pH przez ten środek powoduje brak możliwości namnażania się i bytowania bakteriom - co samo w sobie sprawia, że jednak jest to środek dezynfekcyjny. Napisz mi proszę Panie Chemiku jakie szczepy bakterii psujące piwo działają w pH poniżej 2,4? 
    Co do samej tezy "Widocznie większość operacji piwowarów nie wymaga rzeczywistej dezynfekcji, skoro takie środki są uważane za skuteczne." Zapewniam Cię, że nie jest prawdziwa. Zapraszam Cię na konkursy piwowarskie - powąchasz sobie kwiatki jakie tam spływają. W jednej kategorii na 50 piw potrafi przyjść nawet 30 wadliwych - infekcyjnych. Wyrobienie sobie nawyku dobrej dezynfekcji to kilkadziesiąt warek. Na początku jak sprzęt jest nowy i nie zarośnięty jeszcze jakoś to działa potem zaczynają się cyrki.
     
    Jak pisałem od początku artykułu i miał on na celu przekonanie ludzi w tamtych czasach do dwuetapowej dezynfekcji wiader i sprzętu. Pierwszy etap to Ług/Podchloryn/PBW albo nowość Enzymbrew, drugi etap to dezynfekcja podtrzymująca - OXI, Piro, ClO2 i Starsan. Swiadomość higieny w browarze wtedy mocno kulała ale to ponownie odsyłam do wstępu w artykule.
     
     
    W karcie charakterystyki i opisie produktu wyraźnie piszą co robi Starsan - nigdzie nie twierdzili, że to złoty środek, który za dotknięciem piany magicznie wybija wszystko.  https://static.abstore.pl/design/accounts/marxam/img/bazowy/star-san-hb4.pdf
    Co do samego faktu używania go - jest wygodny po prostu. I technicznie czy jest on drogi? Nie wydaje mi się - 118 ml czyli najmniejsza ilość to niecałe 50 zł, używając go jednorazowo starcza to na realnie na jakieś 70 warek czyli u 90% piwoorgowców na 3 lata. W porównaniu OXI to koszt około 7 zł za 1 kg. 4 g na 1 litr roztworu zużywa go bardzo szybko 100-150 g na warkę schodzi (wiadra, butelki i sprzęt), zwłaszcza że po 30 min. przestaje działać. ClO2 - technicznie najtańszy ale ja ciągle będę uważał, że aromat i trucie się chlorem dla mnie go eliminuje. No i piro został - siarczyny znane od lat też jest w miarę tani, tak jak w przypadku chloru aromat dla mnie dyskwalifikuje - kto choć raz zaciągnął się siarą po piro wie o czym mówię. O alkoholu nie wspominam bo to najdroższy środek.
     
    Niech każdy używa co chce - uważasz, że Starsan nie jest wart swojej ceny okej - natomiast moja praktyka i wielu osób z forum pokazuje, że pomimo "braku - biobójczego składu" spełnia swoje zadanie. 
     
    EDIT: A propo skuteczności środków dezynfekcji zapomniałem o tym eksperymencie: 
     
  14. Super!
    DanielN otrzymał(a) reputację od eneash w Bank drożdży piwowarskich w domowych warunkach 4/4 - agar, skosy, szalki Petriego   
    Bank drożdży piwowarskich w domowych warunkach 4/4 - agar, skosy, szalki
     
    Przeczytanie poradnika zajmie Ci około 30 minut.
     
    Na wstępie chciałbym podziękować forumowiczom (kolejność alfabetyczna): czeburaszka710, Dr2, Pan Łyżwa. Tylko oni dotrwali do końca. Dbali o część stylistyczną i merytoryczną. Zaczynajmy.
     
    Agar w dużym uproszczeniu jest to substancja żelująca. Składa się głównie z galaktozy, jest to cukier, który nie jest trawiony przez drożdże. Jest to również silna substancja żelująca, bo 2 gramy agaru zamieni 100 ml pożywki w galaretkę. Agar ma również bardzo dużą histerezę przejść fazowych. Rozpuszcza się w temperaturze około 90°C a krzepnie około 40°C. Jak zastygnie, to wystarczy go ponownie ogrzać i wróci do postaci płynnej. Tę właściwość będziesz wykorzystywał do robienia podłoża na którym drożdże będą żyły długie miesiące.
     
    Nie będę ukrywał, że metody agarowe są chyba najtrudniejsze ze wszystkich opisywanych. Wymagają więcej czasu i cierpliwości. Będziesz potrzebował nowego sprzętu, bezwzględnej czystości, której nieodłącznym  elementem będzie sterylizacja.

     
    Takie będą owoce Twojej pracy.
    Skos

    Szalka Petriego
    Przyznaje się, specjalnie trzymałam trochę dłużej w cieple, aby było coś widać na zdjęciu.
    Skosy i szalki dla potrzeb piwowarskich mają najczęściej te same podłoże. Na podłożu drożdże mogą egzystować długie miesiące. Literatura podaje przykłady mówiące nawet o latach. Jak się przyjrzysz to w probówce widać charakterystyczny zygzakowaty szlaczek, a w szalce linie. To są komórki drożdżowe, które karmią się pożywką związaną agarem.
     
    Zanim pójdziemy dalej mała przestroga. Na zdjęciu poniżej widać pleśń. Coś czego definitywnie nie chcesz. Pleśń, czy to na agarze czy w brzeczce oznacza tylko jedno - stracony czas i pieniądze.

     
    Aby ją złapać zrobiłem prosty eksperyment. Potrzymałem kilka sekund jedną nadpleśniałą malinę nad otwartą szalką. Żadnego kontaktu fizycznego z podłożem. Bakterie i grzyby są zawieszone w otaczającym nas powietrzu. Głównie przemieszczają się dzięki prądom powietrza. Również są w stanie powoli opadać. Jeżeli czytałeś poprzedni poradnik, to pewnie pamiętasz jaka jest funkcja lampy spirytusowej. Jeżeli nie, to szybkie przypomnienie. Lampa wymusza prąd powietrzny w postaci komina. Powietrze ogrzewa się i unosi ku górze. Drobnoustroje porywane są tym prądem i nie są w stanie opadać. W technikach agarowych lampa spirytusowa jest niezbędna, aby uniknąć kontaminacji jak ta powyższa. Jako dygresję powiem Ci, że w laboratoriach nadal używa się lamp, w zasadzie ich nowoczesnej wersji czyli palników Bunsena. Oczywiście zamiast lampy lepiej mieć komorę laminarną. Wierzcie lub nie, ale są wśród nas tacy zapaleńcy z takim wyposażeniem na stanie browaru domowego.
    Czego będziesz potrzebował
    Agar
    Jest to najczęściej proszek o kolorze kremowo-białym. Najłatwiej go kupić w sklepie internetowym. Możesz go również znaleźć na półce w sklepach ze zdrową żywnością, ale ostrzegam, że w takim sklepie najczęściej mocno przepłacisz. Agar jest bardzo wydajny, około 2 g zwiąże 100 ml pożywki. Na początek 50 - 100 gramów jest w zupełności wystarczające.

     
    Eza
    Eza jest to przyrząd zakończony małym oczkiem. Pozwala przenieść drożdże ze źródła na pożywkę agarową. Proces przeniesienia nazywa się pasażem. Pętelka na jej końcu służy do pobrania drożdży i ‘rozsmarowania’ w miejscu docelowym. Ezę możesz kupić w postaci sterylnych jednorazówek lub metalową do wielokrotnego użytku.
     
    Jednorazowa sterylna eza wygląda tak:

    W przypadku sprzętu jednorazowego ważny jest sposób wyciągania narzędzia. Opakowanie na przeciwległym końcu od oczka ma często łatwe otwarcie listkowe, lub lekkie nacięcie ułatwiające rozrywanie. Sprzętu jałowego jednorazowego nie otwiera się od strony części roboczej, ze względu na ryzyko kontaminacji. Jeżeli nie myślisz o przechowywaniu wielu szczepów, to ezy jednorazowe są dobrym wyborem. Pamiętaj, taka eza po każdym pasażu musi być wymieniona na nową.
     
    Jeżeli nabyłeś umiejętność otwarcia butelki piwa bez otwieracza, to również potrafisz zrobić samodzielnie ezę. Wystarczy trochę drutu najlepiej niklowo-chromowego. Moją ezę zrobiłem z drutu protetycznego sprężysto-twardego o średnicy 0.7mm. Zdecydowanie lepszy będzie cieńszy. Po rozmowie z czeburaszka710 dowiedziałem się, że używa cienkiego nierdzewnego drutu spawalniczego.

     
    Aby zrobić ezę będziesz potrzebował około 30 cm drutu. Pamiętaj, aby nie skaleczyć powierzchni przy wyginaniu, takie małe ‘zadziory’ przecinają agar i jakość pracy jest gorsza. Jakie duże powinno być oczko? Na potrzeby pasaży drożdży eza o średnicy wewnętrznej oczka 3-4 mm jest dobrym wyborem. W miarę wygodnie operuje się takim rozmiarem zarówno na szlakach jak i w skosach. Spotkałem się też z podejściem posiadania dwóch ez. O średnicy wewnętrznej oczka 4-5 mm. Jest wygodna przy operowaniu na szalkach. Mniejsza o średnicy wewnętrznej 1-2 mm używaną przy pasażowaniu na skos, czyli w wąskich probówkach.
     
    Ezy stanowią duet z lampą spirytusową. Ezę przed użyciem opala się do czerwoności w celu sterylizacji. Musi być wysterylizowana na długości takiej jaka będzie wchodziła do probówki/szalki. Kierunek opalania jest zawsze od dłoni do oczka. Jeżeli masz ezę z grubego drutu to bezwładność cieplna będzie duża i zarówno rozżarzanie jak i stygnięcie będzie długie.
     
    Możesz też kupić profesjonalne ezy z uchwytem. Wykonane są z bardzo cienkiego i twardego, jak na taką średnicę, drutu. Mają bardzo małą bezwładność cieplną oraz wygodny uchwyt.. Niestety część robocza takiej ezy jest dość krótka i opalenie całej długości roboczej jest trudne. Takiej ezy używam do szalek i skosów robionych w małych 5 ml probówkach.
     
    Lampa spirytusowa
    Jeżeli chcesz trochę zaoszczędzić, to lampę spirytusową możesz wykonać sam. Te kupne mają tą zaletę, że są szczelnie zakręcane i spirytus, który jest źródłem paliwa się nie rozleje. Jeżeli będziesz się decydował na zakup, to kup większy model. Daje zdecydowanie lepszej jakości płomień i czyści tło o większym promieniu. Krótkie przypomnienie. Lampa w metodach agarowych ma dwa zadania. Po pierwsze dostarcza ogień w którym wysterylizujesz ezę. Po drugie, czyści tło. Paląc się ogrzewa powietrze, które jest unoszone. Wraz z powietrzem unoszone są drobnoustroje. Strefa bezpieczna to odległość do kilkunastu centymetrów od płomienia. Pamiętaj o powolnych ruchach, aby nie wywoływać wirów powietrza, które mogą skierować bakterie i dzikie drożdże prosto na Twoje podłoża. Lampka powinna palić się płomieniem równym i nie niższym jak 5 cm. Aby ustabilizować płomień możesz okręcić knot cienkim drutem, lub przystrzyc knot nożyczkami.

     
    Kolba Erlenmeyera
     
    Będziesz potrzebował  2 kolb. Małej o pojemności 150 - 250 ml oraz dużej 2 - 3 l. Będą służyły do propagacji czyli wykonywania starterów. Mniejsza kolba z powodzeniem mieści się w szybkowarze więc jest łatwa do sterylizacji. Lepszą inwestycją jest kolba 3 litrowa. Możesz wykonać w niej starter do piw dolnej fermentacji oraz mocnych piw górnej fermentacji.
     
     
    Kolby mają różne szerokości szyjek. Te szersze są w moim odczuciu wygodniejsze,  łatwiej je się myje i zawsze wychodzą czyste ze zmywarki. Kolby z wąską szyjką za to mają mniejszy wlot i jest mniejsza szansa, że jakiś mikrob do niej wpadnie.


     
    Zlewka laboratoryjna 200-250 ml
    Nie jest konieczna, ale jest bardzo wygodna do bezpośredniego wylewania agaru prosto na szalki. Przy odrobinie wprawy zlewka przyśpiesza wlewanie podłoża na skosy. Używam jej jeszcze do odkładania ezy. Wylewka jest tak wyprofilowana, że eza się nie stacza i ma małą powierzchnie styku. Zlewki wykonane są z bardzo odpornego szkła boro-krzemowego. Śmiało można przygotowywać w nich gotować na płomieniu. Nic też im się nie stanie w mikrofalówce.



     
    Probówki
    W pierwszej części poradnika polecałem Ci użycie probówek jednorazowych sterylnych. Miało to sens ze względu na oszczędność czasu. W metodach agarowych sterylizacji nie da się uniknąć. Więc bardziej opłaca się kupić probówki które nie są jałowe. Używam dwóch typów, plastikowych Falconów oraz szklanych. Jeżeli zdecydujesz się na szklane to wybierz te zakręcane. Najlepsze będą te bez dużego zwężenia na szyjce. Łato je napełnić i operować ezą. Probówki z korkiem potrafią się rozszczelnić. Przyczyną tego są pracujące drożdże które wytwarzają dwutlenek węgla. Drożdże w lodówce również pracują, tylko o wiele wolniej.
     
    Na obrazku od lewej probówka typu falcon o pojemności 5 ml, falcon 15 ml oraz szklana 18 ml z zakrętką. Probówki 5 ml zajmują mniej miejsca, ale wymagają trochę doświadczenia i wprawy. Na początek polecam Ci większe lub szklane. Ile ich będziesz potrzebował to zależy od Ciebie. Najczęściej robię 3 skosy tego samego szczepu. Ten który wyjdzie najmniej estetycznie używam jako pierwszy. Na start 10 - 20 probówek jednorazowych będzie wystarczającą ilością. Jak myślisz o szklanych zacznij od 4 - 6. Te większe świetnie się nadają jako pierwszy krok startera.

     
    Szalka Petriego
     
    Jest to naczynie które składa się z dwóch części spodka i nakrywki. Po złożeniu przypomina płaski walec. Nakrywa nachodzi luźno na spodek, wręcz sprawia wrażenie zbyt dużej, tak ma być. Rozłożona szklana szalka jest przedstawiona poniżej.
     

     
    W spodek będziesz wlewał płynną pożywkę z agarem, która w kilka minut zamieni się w galaretowate podłoże. Do swoich celów wykorzystuję najczęściej szalki jednorazowe sterylne. Sprzedawane są w opakowaniach zbiorczych po 20 - 25 sztuk.
     
    Jeżeli nie chcesz używać szalek jednorazowych to warto mieć przynajmniej 2 szalki szklane o średnicy nie mniejszej jak 10 cm. Wygodniej się na takich pracuje i łatwiej odizolować kolonie.


     
    Precyzyjna waga
    Aby odważyć takie ilości jak 2 gramy, nie wystarczy Ci waga której używasz do chmielu. Musisz mieć bardziej precyzyjne narzędzie. Szukaj pod hasłem waga jubilerska lub waga precyzyjna. Dobrze jakby waga miała funkcję tarowania oraz potrafiła ważyć do 0,5 kg. Wtedy będziesz mógł mieszać i ważyć roztwór bezpośrednio w kolbie.  

     
    Rękawiczki nitrylowe lub lateksowe
    Rękawiczki nitrylowe są trochę wytrzymalsze. Nie kupuj tylko talkowanych. Najlepiej kup rękawiczki o rozmiar mniejsze od tego jakie nosisz. Jeżeli masz rozmiar L to kup M. Trochę trudniej nałożyć, ale dobrze przylegają i łatwiej się operuje ezą. Najlepiej kupić całą paczkę, będzie zapas na wiele miesięcy.

     
    Maseczka chirurgiczna
    Nie wiem jak Ci, ale mi ciężko wstrzymać oddech na kilkanaście sekund i zachować precyzyjną motorykę. Dlatego maseczka jest bardzo dużym udogodnieniem. Maseczka na jednej krawędzi ma cienki drucik, jest to góra maseczki, który należy zacisnąć na nosie. Osoby noszące okulary docenią to udogodnienie.  Tak jak w przypadku rękawiczek. Najlepiej kupić całą paczkę.

     
    Środek dezynfekujący
    Używam środka opartego na alkoholu. Zachowuję szczególną ostrożność, bo operują przy płomieniu. Do dezynfekcji stołu, na którym pracuję używam StarSanu. Jeżeli jeszcze nie wiesz co to jest to przeczytaj o myciu i dezynfekcji, bardzo wydajny i skuteczny środek. Używam go również do płukania ezy. Jak zdecydujesz się na spirytus medyczny to używaj tego 70%. Jak masz mocniejszy to rozcieńcz go wodą demineralizowaną. Spirytus 70% jest skuteczniejszy jako środek dezynfekujący. Ma to związek ze zjawiskiem okulacji. Bakterie i drożdże mogą tworzyć takie zbitki. Mocny alkohol szybko denaturuje białko i nie przechodzi głębiej, mikroby wewnątrz mogą przeżyć. Słabszy zdąży wniknąć do środka.
     
    Suchy ekstrakt słodowy (DME - dry malt extract)
    Możesz zastąpić go brzeczką niechmieloną o ekstrakcie 5-7°P. Ze względu na oszczędność miejsca używam DME. Paczka 250 gramów wystarcza na długo. Zarówno na potrzeby metod agarowych jak i pierwszego kroku startera.
     
    Pożywka dla drożdży
    Pożywka z przeznaczeniem dla drożdży piwowarskich. W składzie powinna mieć cynk. Paczka 5 g wystarczy na długo. Moja pożywka ma dawkowanie 3 gramy na 10 litrów, zatem na 100 ml potrzebuję 100 razy mniej. Bez wagi precyzyjnej ciężko jest odmierzyć  0,03- 0,04 grama.
     
    Strzykawka
    Nie jest konieczna, ale ułatwia pracę. Napełniając probówki na skosy ważna jest ilość podłoża agarowego. Strzykawka ma podziałkę i jest aż nadto precyzyjna.
     
    Sterylizacja - uzupełnienie
    W części drugiej poradnika opisałem metodę sterylizacji w szybkowarze. W metodach agarowych będzie niezbędna. Jednak szybkowar nie nadaje się do sterylizacji szklanych szalek Petriego. Szalki, aby zachowały sterylność muszą być złożone i w takiej postaci również sterylizowane. Para wodna podczas gotowania wniknie do środka i pozostanie skondensowana na długie dni a nawet tygodnie. Do sterylizacji szklanych szalek oraz kolb możesz użyć piekarnika.
     
    Piekarnik
    Mordercze dla mikrobów jest jego gorące powietrze. Nadaje się do sterylizacji szkła, a dokładniej mówiąc szalek, kolb, menzurek oczywiście bez plastikowych części. Szalki i kolby przed sterylizacją muszą być czyste i suche. Zanim włożysz szkło do piekarnika musisz je zabezpieczyć. Szalki Petriego pakujesz dwukrotnie w folię aluminiową. Zabezpiecza to w przypadku jak pierwsza warstwa zostanie przerwana. Kolby nie muszą być owijane całe, wystarczy porządnie zabezpieczyć wlot. Najpierw pierwsza warstwa folii dokładnie zaciskasz ją na szyjce, potem druga warstwa. W teorii szkło trzymasz w piekarniku przez 1 godzinę w temperaturze 170°C w praktyce temperatura w piekarniku powinna wynosić przynajmniej 185°C. Piekarniki mają dość dużą histerezę. Co skutkuje wahaniem temperatury +/- 10%.
     

    Szalka petriego zapakowana w kieszonkę z folii aluminiowej

    Czysta kolba przygotowana do sterylizacji, kapturek przylega ścisło do kolby.
     
    W piekarniku sterylizuje się szkło na sucho. Jakbyś wlał tam brzeczkę to wysoka temperatura skarmelizowałaby wszystko.
    Ogień
    Otwarty ogień z lampy spirytusowej szybko i skutecznie sterylizuję ezę. Zasada jest taka. Zaczynasz od strony uchwytu/dłoni i powoli nad ogniem rozpalasz metal do czerwoności przesuwając się w stronę oczka. Eza musi być sterylizowana na długości jaka wchodzi do probówki czy też szalki. Warto to przećwiczyć zanim zaczniesz jej używać. Będziesz też wiedział jak długo się ochładza.

     
    Przygotowanie podłoża agarowego
    Przepis z użyciem suchego ekstraktu słodowego.
    Postaw zlewkę/kolbę na wagę. Użyj funkcji tarowania. Jeżeli Twoja waga nie ma tarowania to po prostu dodawaj kolejne wagi składników.
    Do kolby wlej 50 gramów ciepłej wody.
    Dodaj około 2 gram agaru.
    Wymieszaj agar i zaczekaj, aż napęcznieje. Trwa to zwykle około 15 minut. Mieszanie zlewką przyśpiesza proces. Możesz też użyć mieszadła magnetycznego.
    Dodaj 5 gramów suchego ekstraktu słodowego.
    Dodaj pożywkę w takiej ilości jak producent zaleca.
    Dopełnij wodą do 100 gramów.
    Podgrzewaj i mieszaj aż agar się rozpuści, ostrzegam, że lubi kipieć. Agar rozpuszcza się w temperaturze około 90°C.
     
    Jeżeli używasz brzeczki.
    Postaw zlewkę/kolbę na wagę. Użyj funkcji tarowania. Jeżeli Twoja waga nie ma tarowania to po prostu dodawaj kolejne wagi składników.
    Do kolby wlej 98 gramów brzeczki o ekstrakcie 5°P, brzeczka ma być czysta, bez chmielu i innych dodatków.
    Dodaj 2 gramy agaru.
    Wymieszaj agar i zaczekaj, aż napęcznieje. Trwa to zwykle około 15 minut. Mieszanie zlewką przyśpiesza proces. Możesz też użyć mieszadła magnetycznego.
    Podgrzewaj i mieszaj aż agar się rozpuści, ostrzegam, że lubi kipieć. Agar rozpuszcza się w temperaturze około 90°C.
     
    Jak agar się rozpuści to zakryj wlot folią aluminiową. Jest gotowy do sterylizacji.
     
    Jeżeli użyjesz 1.8 grama agaru, podłoże będzie trochę luźniejsze. Większa ilość około 2.2 gramy agaru zwiąże mocniej podłoże. Po nabraniu doświadczenia ilość dopasujesz do swoich preferencji.
     
    Dobrym sposobem na rozpuszczenie agaru jest użycie mikrofalówki. Jeżeli używałeś mieszadła to wyjmij mieszadełko zanim wstawisz zlewkę do kuchenki. Kuchenka mikrofalowa wymaga  nieco wprawy i wyczucia. Nie używaj pełnej mocy. Zacznij podgrzewać i obserwować. Jak roztwór zaczyna się pienić to wyłącz mikrofalówkę, wymieszaj i podgrzej jeszcze chwilę. Zajmie CI to od minuty do dwóch.
     
    Jeśli agar Ci zastygnie możesz go ponownie rozpuścić w kąpieli wodnej. Kuchenka mikrofalowa również rozpuści agar, ale wymaga szczególnej ostrożności. Jeżeli w agarze są małe bąble powietrza, to potrafi narobić niezłego bałaganu. Nie podgrzewaj też na pełnej mocy.
     
    Szalki Petriego
    Szalki Petriego w warunkach domowych są trudne do składowania drożdży, ze względu na to, że nie da się ich szczelnie zamknąć. Zajmują również dużo miejsca w lodówce. Szczerze, to nie używam szalek do trzymania depozytów. Siłą szalek Petriego jest izolowanie szczepów za pomocą posiewów redukcyjnych. Przy odrobinie czasu i pracy jesteś w stanie rozdzielić szczepy drożdży, sprawdzić ich czystość. Odpowiednio dobierając podłoża i antybiotyki również oczyścić szczep z bakterii, jednak to już jest temat wybiegający poza ten poradnik. Jeżeli myślałeś o łapaniu dzikich drożdży szalki pozwolą Ci wyizolować szczep. W poradniku będę używał sterylnych plastikowych szalek, jeżeli masz szklane to najpierw je wysterylizuj w piekarniku.
     
    Przygotowanie szalek Petriego
    Szalki należy przygotować minimum na dwa dni przed ich użyciem. Ma to na celu sprawdzenie sterylności procesu oraz pozbycie się resztek kondensacji wody. Jeżeli nie zachowałeś należytej czystości to po dwóch dniach będziesz o tym wiedział a w zasadzie widział. W szalkach nie ma prawa nic wyrosnąć. Jakiekolwiek widoczne przejawy życia dyskwalifikują całą partię. Jest to czas na refleksje i przeanalizowanie co poszło nie tak w procesie ich przygotowywania.
     
    Jak wyjąć sterylną szalkę Petriego ze sterylnego opakowania zbiorczego
    Jednorazowe sterylne szalki Petriego najczęściej pakowane są w opakowanie zbiorcze takie jak na obrazku. Po to by zachować ich sterylność należy je wyjąć w odpowiedni sposób. Na górze jest wysoki zgrzew. Postaw szalki na stole, zgrzew ma być na górze. Załóżmy że chcesz wyjąć dwie. Przez folię wciśnij palec pomiędzy denko drugiej szalki a pokrywkę trzeciej. Drugą ręką , tuż pod zgrzewem, odetnij nożyczkami górę opakowania. Podważ palcem który separuje naczynia i wyjmij odliczone szalki drugą ręką. Odstaw w otoczenie lampy spirytusowej. Zagnij zwisający rękaw i zabezpiecz taśmą. W miarę wyciągania rękaw staje się coraz dłuższy. Raz na jakiś czas możesz go przyciąć. Szalki zachowują sterylność wewnątrz do momentu ich otwarcia. Czasem przychodzą z bardzo niewielką ilością miejsca pod zgrzewem. W takim wypadku musisz wyjąć kilka sztuk tak aby wystarczyło rękawa wystarczyło na zagięcie.

     
    Proces przygotowania szalek
    Przygotowujesz podłoże agarowe zgodnie z wcześniejszą instrukcją. Roztwór szczelnie zakryj folią aluminiową i wysterylizuj w szybkowarze. Proces sterylizacji opisałem w drugiej części poradnika. Po wyjęciu agaru z szybkowaru masz trochę czasu na przygotowanie stanowiska pracy.
    Przygotuj pomieszczenie. Ma być czyste, bez przeciągów. W sezonie grzewczym zakręć kaloryfer przynajmniej na godzinę przed procesem. Zminimalizuje to prądy powietrzne.
    Zdezynfekuj stół zgodnie z instrukcją środka. Jeżeli jest taka potrzeba wytrzyj go do sucha. Środki na alkoholu najczęściej parują w kilka minut.
    Przygotuj maseczkę, rękawiczki, zapalniczkę, lampkę i szalki Petriego. Nie wyciągaj jeszcze szalek ze sterylnego opakowania.
    Najtrudniejsza część, obserwacja kolby/zlewki z agarem. Podłoże musisz wylać na szalki jak jest bliski zakrzepnięcia, ale jest jeszcze w fazie płynnej. Czyli pomiędzy pomiędzy 40°C a 50°C. Jeżeli zrobisz to za szybko, to para skondensuję się pod przykrywką. Zanim woda odparuje minie wiele dni. Jak dobrze wyczujesz moment, to nagromadzona woda odparuje po jednym dwóch dniach. Jeżeli agar wlejesz za późno to powierzchnia na spodzie będzie nierówna i posiew redukcyjny będzie niemożliwy. Najtańszy pirometr znacznie ułatwia obserwację.
    Jak agar jest już bliski zastygnięcia. Podpal knot lampy spirytusowej. Załóż rękawiczki i maseczkę. Zdezynfekuj dłonie.
    Wyjmij szalki z opakowania, połóż je jedna na drugiej naprzeciw lampy spirytusowej.
    W otoczeniu lampy zdejmij folię aluminiową z agaru.
    Drugą ręką złap najniższą nakrywkę szalki i unieś ją do góry. Uważaj abyś nie przewrócił szalek stojących na pokrywce. Wlej powoli pożywkę z agarem tak, aby rozlała się jednolicie cienką warstwę na spodzie szalki. Dla szalki 10 cm będzie to około 20 - 25 ml. Zakryj ponownie szalkę i przejdź do tej piętro wyżej. Powtarzaj ten punkt dla szalek na stosie.
    Szalki delikatnie zaparują. Jest to normalne. Kondensacja zniknie po 1-2 dniach.
    Zaczekaj kilka minut, aż agar zwiąże. Wtedy możesz ścisnąć szalki gumką recepturką i odstawić do zdezynfekowania pudełka z przykrywką. Szalki przechowuj na pokrywkach. Czyli do góry nogami. Jak kondensacja zniknie możesz każdą okręcić taśmą, będą wolniej wysychały. Jak nic na nich nie wyrosło w przeciągu 2-3 dni, możesz przechowywać je w lodówce. Tutaj uwaga, pudełko też okręć taśmą, aby bakterie nie przechodziły do środka.

     
    Powtórzę się. Jeżeli w którejkolwiek z szalek zauważysz formujące się życie, to cała partia idzie do wyrzucenia. Mogą to być plamki, szlaczki, cienkie rozlewy, przebarwienia, zmatowione obszary. Jeżeli nie jesteś pewien, to zrób zdjęcie i porównaj następnego dnia. Jak się powiększa to znaczy, że żyje.

     
    Posiew redukcyjny
    Celem posiewu redukcyjnego jest separacja drożdży. Posiew również pozwala na sprawdzenie czystości źródła. Jeżeli zauważysz coś więcej od jasno kremowych plamek z żywymi kulturami drożdży, to najprawdopodobniej źródło pozostawia wiele do życzenia. Posiew nawet w takim przypadku jest przydatny, bo pozwoli odseparować czyste kolonie drożdży.
     
    Aby wykonać posiew musisz mieć źródło drożdży. Może to być otrzymany skos lub inna próbka, którą chcesz sprawdzić. Lub też masz stare skosy i podejrzewasz, że masz w nich mocną mutację i chciałbyś pominąć zmutowane kolonie (da się to zrobić, jeżeli mutacja jest widoczna gołym okiem, jak tlenowa, czy beztlenowa, w innych przypadkach jest to loteria). Możesz dostałeś gęstwę z fajnym szczepem, ale jest podejrzenie, że jest zakażona dzikimi drożdżami. Może masz piwo niepasteryzowane, które nie było refermentowane innym szczepem i chciałbyś użyć właśnie tych drożdży. A może po prostu chcesz sprawdzić czy Twój szczep przygotowany do składowania pod solą fizjologiczna czy też do mrożenia jest czysty.
     
    Posiew redukcyjny to nic innego jak ‘malowanie’ ezą po przygotowanym podłożu agarowym. Przy czym te ‘malowanie’ podlega schematowi. Poniżej przedstawię chyba najczęściej stosowany przez piwowarów. Wizualnie wygląda to tak. Kolory oznaczają kolejne kroki. Po każdym kroku musisz wysterylizować ezę w ogniu, w przypadku jednorazowych wymienić ją na nową. Właśnie z tego powodu nie lubię ez jednorazowych przy szalkach.


     
    Procedura posiewu redukcyjnego
    Przygotuj pomieszczenie. Ma być czyste, bez przeciągów. W sezonie grzewczym zakręć kaloryfer przynajmniej na godzinę przed procesem. Zminimalizuje to prądy powietrzne.
    Zdezynfekuj stół zgodnie z instrukcją środka. Jeżeli jest taka potrzeba wytrzyj go do sucha. Środki na alkoholu najczęściej parują w kilka minut.
    Przygotuj maseczkę, rękawiczki, zapalniczkę, lampkę i czyste szalki Petriego z wylanym podłożem. Przydatne będzie szklane naczynie na które będziesz odkładał ezę. Do naczynia możesz wlać StarSan, przydatny do płukania resztek drożdży przed sterylizacją w ogniu. Ezę będziesz odkładał na górnej krawędzi naczynia. Zlewka jest świetna, bo eza blokuje się w jej zagłębieniu i nie stacza się.
    Przygotuj źródło drożdży i szalkę z podłożem, postaw je w pobliżu płomienia lampy.
    Podpal knot lampy, załóż maskę i rękawiczki, zdezynfekuj dłonie, zaczekaj aż wyschną.
    Wysterylizuj ezę w ogniu, na takiej długości jaka jest średnica szalki. Kierunek od dłoni do oczka. Eza musi się rozżarzyć a następnie ostygnąć.
    Dotknij ezą źródła drożdży. Potrzebujesz tylko troszeczkę drożdży.
    Odłóż delikatnie pokrywę z czystej szalki. Rantem do góry. Weź do ręki spodek z podłożem i narysuj kilka linii nie odrywając ezy. Jest to krok numer 1 na powyższym obrazku. Namaluj 5-7 linii. Przekręć delikatnie szalkę w dłoni o około 80°.
    Wysterylizuj ezę w ogniu, tym razem wystarczy tylko część roboczą. Jeżeli źródło drożdży było za duże to drożdże się zwęglą. Wtedy spłukaj ezę i wysterylizuj jeszcze raz. Zaczekaj, aż eza wystygnie i narysuj szlaczek bez odrywania ezy jak w punkcie 2 (kolor fioletowy) na rysunku. Ponownie 5-7 linii. Tutaj uwaga, zacznij tam gdzie się kończą linie z punktu 1. Bo te linie stanowią teraz źródło.
    Podobnie krok numer 3. Przekręcasz szalkę, sterylizujesz ezę, czekasz aż wystygnie i rysujesz linie jak na rysunku dla liniii 3 (kolor brązowy). W tym kroku już masz dużo dużo mniej komórek drożdżowych jak w punkcie pierwszym.
    W ostatnim kroku podobnie jak w poprzednim kroku. Przekręcasz szalkę, sterylizujesz ezę w ogniu, czekasz aż wystygnie. Tym razem zapożyczając z linii 3 (brązowej). Najlepiej zrobić zapożyczenie tylko pierwszą linią. Na rysunku - kolor zielony zapożycza z brązowego. Rysujesz szlaczek bez odrywania po reszcie szalki na wolnej powierzchni. Właśnie w tym kroku będzie najwięcej pojedynczych kolonii. O te pojedyncze kolonie właśnie chodzi.
    Zakrywasz szalkę, odstawiasz ją do góry nogami i zaklejasz taśmą.
    Odstawiasz ją w ciepłym miejscu na 2-3 dni. Po tym czasie drożdże wyrosną.
     
    Jak masz już wyhodowaną linię, jesteś w stanie stwierdzić czy jest na niej coś oprócz drożdży.


     
    Co możesz zrobić z nią dalej. Jest kilka możliwości.
    Może być Twoim bankiem drożdży. Szalkę zabezpieczoną taśmą w pudełku styropianowym możesz trzymać kilka miesięcy w lodówce (wg literatury 3-4).
    Jeżeli to było sprawdzenie czystości źródła i nie budzi zastrzeżeń to możesz ją przenieść na skosy.
    Jeżeli nie chcesz zrobić skosów, to możesz je rozpropagować, a następnie przenieść pod sól fizjologiczną lub zamrozić.
    Jeżeli na szalce wyrosło coś więcej oprócz drożdży. Ale widzisz kilka odseparowanych i czystych kolonii. To możesz pasażować te kolonie na czystą szalkę. W następnej powinieneś mieć już czyste drożdże. Jeżeli nie, to powtórz krok. Brawo najprawdopodobniej oczyściłeś drożdże.
    Jeżeli widzisz różniące się od siebie kolonie, czy to kolorystycznie, czy granulacyjnie, czy też wielkościowo, to możesz mieć więcej jak jeden gatunek na szalce. Często są to dzikusy. Wtedy rozpropaguj różnie wyglądające kolonie do niezależnych mini starterów. Za każdym razem sterylną ezą. Zrób małe warki i porównaj. Te które Ci pasują zachowaj.
    Jeżeli masz blend drożdży to możesz pokusić się o jego rozdzielenie. Jest to w zasadzie punkt podobny do poprzedniego.
     
    Propagacja drożdży z szalki
    Zanim zacznie propagację z szalki musisz ją wyjąć przynajmniej na godzinę przed rozpoczęciem procesu. Nabierze temperatury otoczenia. Szalki do momentu użycia powinny leżeć do góry nogami, czyli na pokrywce. Dokładnie przypatrz się szalce pod światło w poszukiwaniu czy nie wyrosło coś na niej oprócz drożdży. Jeżeli tak, to najlepiej ją przesiać. Jeżeli jest w porządku to namierz przynajmniej 5 odseparowanych kolonii. Możesz oznaczyć je mazakiem malując kółka na spodku, będzie łatwiej namierzać ponownie. Muszą to być średniej wielkości kolonie. Te przesadnie duże mogą mieć mutację tlenową, te malutkie i niewyrośnięte beztlenową. Namierzone kolonie będziesz zbierał za pomocą ezy do małego startera.

     
    Przygotuj w probówce 15-20 ml brzeczki o ekstrakcie 4-5°P. Dodaj również pożywki z cynkiem zgodnie z zaleceniami producenta. Poluzuj korek w probówce i ją wysterylizuj. Taka mała uwaga. Warto mieć kilka takich probówek już z wysterylizowaną zawartością, oszczędza to czas.
    Przynajmniej na godzinę przed wyjmij szalkę ze źródłem drożdży, aby nabrała temperatury pokojowej. Zapamiętaj mniej więcej gdzie są kolonie które chcesz zebrać.
    Przygotuj środowisko pracy, zdezynfekuj blat, wystaw lampę, szalkę z petriego, ezę, rękawiczki, maseczkę, zapalniczkę
    Podpal knot lampy, nałóż maseczkę i rękawiczki, zdezynfekuj dłonie.
    Odkręć starter tak, aby można było zdjąć pokrywkę jedną ręką. Starter musi stać blisko lampy oraz musi być unieruchomiony tak aby się nie przewrócił. Wraz z wprawą, będziesz mógł go trzymać w dłoni.
    Wysterylizuj ezę w ogniu na długości takiej ile wynosi średnica szalki. Kierunek od dłoni do oczka.
    Zdejmij nakrętkę ze startera.
    Zaczekaj aż eza ostygnie, drugą ręką uchyl szalkę na tyle, abyś mógł swobodnie operować ezą. Dotknij ezą w czysty agar by upewnić się, że jest już zimna. Zbierz do oczka pierwszą wybraną kolonię. Przenieś ją do startera i delikatnie potrząchaj, drożdże spadną. Kontynuuj ten krok przynajmniej dla 5 kolonii.
    Odłóż ezę, zakryj szalkę. Zakręć porządnie starter i tak samo go wytrząchaj.
    Zabezpiecz ponownie taśmą brzegi szalki (jak chcesz jej nadal używać).
    Zdezynfekuj starter, nie zapomnij pod nakrętką. Delikatnie go odkręć aby dwutlenek węgla miał gdzie się ulatniać. Trzymaj go w temperaturze pokojowej. Po około jednym dniu zauważysz więcej drożdży na dnie. Czas na dalszą propagację opisaną w części drugiej poradnika.
     
    Skosy
    Skosy podobnie jak podłoża agarowe przygotowuje kilka dni przed użyciem. Są szczelnie zakręcane więc mogą spędzić długie miesiące w lodówce zanim zostaną użyte. Jeżeli na skosie zauważysz jakiekolwiek wykwity, cała partia jest do wyrzucenia.
    Skos jest to podłoże agarowe w probówce. Zanim agar zakrzepnie probówkę kładzie się pod kątem 20-35°. Agar zastyga tworząc charakterystyczne zbocze. Taki kształt zwiększa pole powierzchni oraz umożliwia prowadzenie ezy po całej jego długości. Obrazowo wygląda to tak na rysunku:

    Widok z przodu.
    Widok z boku.
    Sposób prowadzenia ezy podczas pasażowania.






     
    Przygotowanie podłoża agarowego jest dokładnie takie samo jak dla szalek. Jednak zanim stworzysz pierwsze skosy muszę Ci przypomnieć o czymś takim jak kondensacja wody. W skosach jest szczególnie dotkliwa. Nasuwa się pytanie, czemu ta woda jest taka zła, przecież jest sterylna? Jest zła dlatego, że jak naniesiesz drożdże na skos i woda się po nich rozleje, to porwie wiele komórek. Zaczną rosnąć na całej powierzchni. Drożdże nawet w lodówce powoli pracują i wytwarzają CO2. W probówce powstanie duże ciśnienie. Otwarcie tej probówki skończy się zniszczeniem skosu na skutek szybkiej zmiany ciśnienia i śmiercią wielu komórek. Moim zdaniem kondensacji lepiej zapobiegać jak ją usuwać.
     
    Skosy można przygotować techniką podobną jak szalki Petriego.
     
    Uwaga: Zanim zaczniesz przygotuj małą podstawkę dla probówek, tak aby po położeniu tworzyły kąt kąt około 20-35°. Połóż probówkę na tej podstawce i strzykawką delikatnie wlewaj wodę. Pozwoli Ci to sprawdzić ile będziesz mógł wlać podłoża. Podłoże ma kończyć się około 1-2 cm przed gwintem, a sam skos zaczynać około 2-3 cm od podstawy. Wtedy podłoże będzie ściśle przylegało i nie odklei się.
     
    Procedura przygotowywania skosu - podobnie jak szalek Petriego:
    Przygotuj probówki. Mają być czyste i suche.
    Przygotuj podłoże agarowe wg receptury podanej wcześniej. Zakryj zlewkę szczelnie folią aluminiową.
    Poluzuj bardzo mocno nakrętki, tak aby para mogła wniknąć do środka. Każdą zakrętkę na probówce dodatkowo zabezpiecz kapturkiem z folii aluminiowej.Zaciśnij na tyle, aby para mogła wnikać do środka.
    Wysterylizuj podłoże oraz probówki. Jak szybkowar się otworzy to nie podnoś pokrywy, odczekaj przynajmniej pół godziny aż temperatura nieco spadnie. Będzie wtedy bardzo niewielka kondensacja w pustych probówkach.
    Otwórz szybkowar i dokręć probówki.
    Zaczekaj, aż temperatura podłoża spadnie do około 40-45°C (blisko zastygnięcia, ale nadal płynne). Zobaczysz, że będziesz miał bardzo niewielką kondensację, bez pływających kropli.
    Przygotuj miejsce pracy (dezynfekcja blatu, lampa spirytusowa, probówki w pozycji pionowej).
    Postaw probówki blisko lampy i poluzuj zakrętki.
    Do strzykawki nabierz podłoża. Strzykawka 20 ml wystarcza na napełnienie 3 15ml probówek. Wlej podłoże do probówek i dociśnij zakrętki. Przy odrobinie wprawy możesz wlewać do falcona prosto ze zlewki.
    Połóż probówki pod kątem, aby utworzył się skos. Jako oparcia możesz użyć coś płaskiego, zeszyt, ołówek. Pochylenie ma być takie, żeby skos kończył się około 1-2 cm przed zakrętką i zaczynał 2-3 cm od podstawy. Zaczekaj, aż podłoże zwiąże.
    Odstaw skosy w pozycji pionowej w ciepłym miejscu kilka dni. Nie ma prawa na nich nic wyrosnąć. Jeżeli wyrośnie to partia jest do wyrzucenia. Zabezpiecz też zakrętki taśmą. Jak po kilku dniach są czyste można przenieść je do lodówki.

     
    Ten sposób zapewnia minimum kondensacji. Minusem jest większe ryzyko kontaminacji, bo musisz transferować sterylne podłoże i do tego celu trzeba rozstawiać trochę sprzętu. Przygotowywuję najczęściej puste skosy właśnie w ten sposób.

     
    Drugim sposobem przygotowania czystych skosów jest sterylizacja podłoża w probówce. Minusem tej metody jest niestety spora kondensacja (rozmawiałem z kilkoma piwowarami i mają ten sam problem, jeżeli masz jakiś sposób to proszę daj mi znać). Jak ja usunąć opiszę później.
     
    Procedura przygotowywania skosu - sterylizacja podłoża w probówce:
    Przygotuj probówki. Mają być czyste i suche.
    Przygotuj podłoże agarowe wg receptury podanej wcześniej. Strzykawką, nie musi być sterylna, napełnij każdą probówkę taką samą ilością podłoża. Podłoża powinno być tyle, żeby utworzyło skos po położeniu na podpórce. Jak nie wiesz ile to zrób test z wodą.
    Bardzo delikatnie dokręć nakrętki, mają być luźne. Każdą nakrętkę zabezpiecz folią aluminiową. Folii również nie dociskaj mocno, aby ciśnienie mogło się wyrównywać.
    Ustaw pionowo probówki w szybkowarze (zlewka lub szklanka oraz folia aluminiowa to tani i dobry sposób). Pionowe ustawienie również zmniejszy kondensację na ściankach. W wysterylizuj probówki. Nie wyciągaj ich od razu, pozwól aby szybkowar powoli ostygł. Ale nie przegap punktu zastygania agaru. Powolne ochładzanie zmniejsza skraplanie wody wewnątrz probówek.
    Połóż probówki pod kątem, aby utworzył się skos. Jako oparcia możesz użyć coś płaskiego, zeszyt, ołówek. Pochylenie ma być takie żeby skos kończył się około 1-2 cm przed zakrętką i zaczynał 2-3 cm od podstawy. Zaczekaj, aż podłoże zwiąże.
    Połóż probówki pod kątem, aby utworzył się skos. Jako oparcia możesz użyć coś płaskiego, zeszyt, ołówek. Pochylenie ma być takie, żeby skos kończył się około 1-2 cm przed zakrętką i zaczynał 2-3 cm od podstawy. Zaczekaj, aż podłoże zwiąże.
    Odstaw skosy w pozycji pionowej w ciepłym miejscu kilka dni. Nie ma prawa na nich nic wyrosnąć. Jeżeli wyrośnie to partia jest do wyrzucenia. Zabezpiecz też zakrętki taśmą. Jak po kilku dniach są czyste można przenieść je do lodówki.


     
    Uwaga: Nowoczesne szybkowary otwierają w przeciągu kilku, kilkunastu minut. Ciśnienie w szybkowarze szybko spada do poziomu otoczenia. To często tworzy dużą kondensację wody wewnątrz probówek. Jest na tyle duża, że będziesz widział pływające krople. Woda w skosie będzie porywała ze sobą drożdże i w efekcie po jakimś czasie cały skos zarośnie warstwą drożdży. Te będą pracowały i wytworzą duże ciśnienie. Przy otwarciu skosu nagła zmiana ciśnienia zniszy skos (agar popęka, sporo drożdży zginie). Jeżeli będziesz widział pływające krople w Twoich pustych skosach,  to na kilka godzin przed użyciem postaw skosy w pozycji pionowej, np. w szklance, na zakrętce. Woda spłynie. Przed pasażem drożdży odkręć skos w otoczeniu lampy i wylej nadmiar wody. Możesz też użyć sterylnych jednorazowych gazików, te skutecznie wchłoną wodę nawet nagromadzoną w gwincie.

     
    Pasaż na skos (sianie skosów)
     
    Masz już czyste skosy przygotowane kilka dni wcześniej. Czas na pasaż ze źródła drożdży na podłoże. Drożdże na skos przenoszę najczęściej z dedykowanego startera. Ale nic nie stoi na przeszkodzie, aby przenieść drożdże z opakowania prosto od producenta (o ile tego samego dnia robisz duży starter, bo trzeba będzie opakowanie otworzyć). Świetnym źródłem drożdży są również depozyty przygotowywane zgodnie z instrukcją z części pierwszej poradnika. Nic nie stoi na przeszkodzie by leciwe probówki przenieść na skos i przedłużyć im życie o kilka miesięcy.
     
    Ilość przechowywanych skosów dla jednego szczepu zależy już od Ciebie. Sposób organizacji banku tak samo. Powiem Ci, że w literaturze podają taką organizację. Jeden skos jest traktowany jako ‘matka’ i otwiera się go tylko w celu pasażu na czyste skosy ‘dzieci’. Same startery już robi się ze skosów ‘dzieci’. Ma to na celu minimalizację ryzyka kontaminacji.
     
    Zakładam, że masz dedykowany kilkumilimetrowy starter z brzeczką 4-5°P oraz pożywką.
     
    Przygotuj środowisko pracy. Pomieszczenie ma być czyste i wolne od przeciągów. Zdezynfekuj blat, wystaw potrzebny sprzęt (lampa, rękawiczki, maseczka, zapalniczka, eza, źródło drożdży, puste skosy, środek dezynfekujący)
    Załóż rękawiczki i maseczkę i podpal lampę.
    Zdejmij taśmę zabezpieczającę ze skosów. Zdezynfekuj dłonie, skosy i źródło drożdży. Zrób to daleko od płomienia.
    Poluzuj zakrętki skosów (trzymaj je pionowo blisko lampy, np. w szklance, zlewce lub stelażu).
    Wymieszaj źródło drożdży i delikatnie zdejmij zakrętkę (źródło musi znajdować się w otoczeniu lampy)
    Wysterylizuj ezę w ogniu na długości jaka będzie wchodziła do skosu.
    Weź pusty skos w dłoń (zerknij poniżej całego opisu na zdjęcia). Okręć palcem wskazującym i kciukiem zakrętkę. Zakrętkę trzymaj w palcach. Jeżeli ten chwyt nie jest Ci wygodny, to możesz zrobić to po swojemu. Zakrętkę wtedy odłóż w otoczeniu lampy gwintem do góry.
    Dotknij ezą do źródła drożdży. Tutaj uwaga. Jeżeli masz ezę z dużym oczkiem i nabierzesz pełne oczko, to jest duża szansa, że drożdże się rozleją przy pierwszym dotknięciu do skosu. Jak się to zdarzy, to nabrałeś za dużo. Zmniejsz oczko w ezie i będzie wszystko dobrze.
    Tak jak na rysunku, prowadź od dołu do góry, ruchem zygzakowym oczko ezy po powierzchni skosu.

    Zakręć skos. Powtarzaj od punktu 6 dla każdego pustego skosu.
    Opisz skosy datą i szczepem. Tak zasiane skosy odłuż zapakuj do pudełka plasitkowego zdezynfekowanego od wewnątrz. Przechowuj je ciepłym miejscu przez 2-3 dni. Drożdże w tym czasie wyrosną w postaci szlaczka. Codziennie delikatnie poluzuj zakrętkę w celu pozbycia się nadmiaru dwutlenku węgla, nie zapomnij zdezynfekować zakrętki przed i po.
    Jak wyrosną to ostatni raz upuść nadmiar CO2. Zdezynfekuj, zabezpiecz zakrętki taśmą i przenieś je do lodówki.Skosy najczęściej przechowuje się w pozycji pionowej. Powinny być trzymane w dedykowanym termoizolacyjnym pudełku z wkładami chłodzącymi w celu niwelowania wahań temperatury. Wydłuży ich to czas przydatności.

     



     
    Jak skos ma odpowiednie warunki to śmiało może stać pół roku. Udawało mi się ruszyć nawet starsze.

     
    Jak użyć drożdży ze skosu
    Sposób pierwszy
    Założenie: skos jest już stary i chcesz go zużyć w całości.
    Przygotuj mały starter około 15 ml o ekstrakcie 4-5°P (w probówce 30-50 ml)
    Wyjmij skos przynajmniej na godzinę przed użyciem. Musi się ogrzać do temperatury otoczenia.
    Załóż rękawiczki, maseczkę zdezynfekuj dłonie, skos, starter.
    W otoczeniu płomienia lampy za pomocą sterylnej strzykawki i igły pobierz 2-3 ml brzeczki ze startera. Zakryj starter.
    W otoczeniu płomienia lampy odkręć skos i spłukaj/zeskrob strzykawką drożdże ze skosu.
    Zakręć skos i delikatnie mieszaj w celu spłukania jak największej ilości drożdzy. Jeżeli skos się odklei (zdarza się) to ostrożnie przy wylewaniu.
    Zdezynfekuj jeszcze raz zakrętkę skosu, odkręć go, opal wlot probówki nad ogniem i przelej zawartość do startera. Jeżeli skos Ci się odkleił to przy przelewaniu możesz przytrzymać go sterylną igłą.
    Zakręć starter, wytrząchaj go w celu natlenienia. Zdezynfekuj zakrętkę i delikatnie ją poluzuj, by dwutlenek węgla miał gdzie uchodzić. Po 24 godzinach propaguj do większych ilości zgodnie z drugą częścią poradnika.
     
    Sposób drugi
    Najczęściej stosowany. Trzeba ezą pobrać próbkę i przenieść ją do startera.
     
    Wyjmij skos przynajmniej na godzinę przed użyciem. Musi się ogrzać do temperatury otoczenia.
    Przygotuj w probówce sterylny starter 15ml o ekstrakcie 4-5°P.
    Przygotuj środowisko pracy. Pomieszczenie bez przeciągów. Zdezynfekowany stół. Pracujesz  rękawiczkach i maseczce w otoczeniu płomienia lampy.
    Odkręcasz zdezynfekowany skos (chwyt taki sam jak podczas pasażu na pusty skos)
    Wysterylizuj ezę w ogniu. Poczekaj aż ostygnie.
    Dotknij ezą na samej górze skosu, aby upewnić się, że jest zimna
    Zeskrob oczkiem ezy trochę drożdży.
    Zakręć skos (warto go delikatnie opalić przed zakręceniem, nie poparz się).
    Spłukaj drożdże z ezy w starterze.
    Zakręć starter, wytrząchaj go w celu natlenienia. Zdezynfekuj zakrętkę i delikatnie ją poluzuj, by dwutlenek węgla miał gdzie uchodzić. Po 24 godzinach propaguj do większych ilości zgodnie z drugą częścią poradnika.
    Na skosie warto zapisać datę pasażu. Skos po 3-4 pasażach możesz zużyć zgodnie z metodą pierwszą.

     
    Uwaga: Najczęściej środki dezynfekujące bazują na alkoholu. Efekt uboczny to czyszczenie wszelkiego rodzaju napisów robionych markerami. Dlatego ostrożnie dezynfekuj zakrętki skosów, aby nie zniszczyć opisów. Możesz też robić opisy na doklejonej kartce. Opcją jest też numerowanie probówek. Numer zabezpiecz przezroczystą taśmą. Same zapiski prowadź w oddzielnym miejscu. Zapiski online są dobrym pomysłem. Masz do nich dostęp i widzisz kiedy są bliskie zakładanego terminu i wymagają pasażu.
     
    Porada: W ten sposób również możesz propagować drożdże z pod soli. Wtedy możesz utrzymywać jedną probówkę. Zamiast ezy możesz odessać kilka kropel sterylną igłą i strzykawką.
     
    Utrzymanie banku.
    Nie ma czegoś takiego jak termin ważności skosu czy drożdży, jak żyją i są w stanie zrobić smaczne to znaczy, że są dobre do naszych celów. Wszystko zależy od warunków i szczepu. Musisz sobie ustalić jakąś granicę, powiedzmy kwartał, może pół roku. Cyklicznie, co zakładany okres będziesz musiał wykonywać pasaż ze starego skosu na nowy. Jest to zwykły pasaż. Jedyna różnica jest taka, że źródłem drożdży jest Twój stary skos. Możesz też wcześniej wykonać mini starter aby mieć pewność, że będziesz przenosił witalne komórki.
     
    Aby przedłużyć żywotność skosów o kilka miesięcy, możesz je zalać sterylną parafiną. Parafina zmniejszy ilość tlenu i tym samym również ryzyko mutacji. Minusem będzie to, że pasaż będziesz mógł wykonać tylko ezą i uważać żeby nie wylać parafiny.
     
    Zamiast probówek możesz też używać innych pojemników. Fajną alternatywą są butelki z septą, albo płaskie zakręcane butelki. Pojemniki powinny być przede wszystkim szczelne i małe. Wielkość jest ważna, aby ograniczyć drożdżom tlen. Nie będą wysychały oraz zmniejsza się ryzyko mutacji. Duże pojemniki w moim subiektywnym odczuciu mijają się z ideą banku, gdzie ważna jest oszczędność miejsca. Przy kilku szczepach zajmą dużo miejsca.
     
    Zalety metody:
    Długi czas przechowywania (pół roku jest to częsty okres wymieniany w literaturze, nawet rok jak są pod sterylną parafiną).
    Można zauważyć większość kontaminacji gołym okiem.
    Skosy wytrzymają kilka dni poza lodówką, można je wysłać bez obawy, że się rozleją.
    Stosunkowo tania jak masz szybkowar.

     
    Wady metody:
    Czasochłonna.
    Kondensacja. W zasadzie przy pierwszych skosach zanim nie wyczujesz w czym rzecz.
    Łatwo o kontaminację be zachowania sterylnych warunków.
    Zajmuje stosunkowo dużo miejsca w lodówce (chyba, że używasz fiolek 5 ml)
     
    Koszty metody (jak zawsze pesymistyczne bez kosztów dostawy i musisz kupić wszystko)
    Sprzęt potrzebny dla metody (łącznie cena oscyluje około ~ 150 zł, przy utrzymaniu kilku szczepów wystarczy na lata)
    Duża lampa spirytusowa - 15 - 20 zł
    Paliwo do lampy (czysty bioetalon 1l) - 10 - 15 zł
    Środek dezynfekujący na alkoholu - 10 - 15 zł
    Probówka 50ml do starterów (10 sztuk) - 15 zł
    Drut protetyczny 0,6mm na ezę, lub 50 ez sterylnych - 10 zł
    Rękawiczki (50 par) - 10 - 15 zł
    Pożywka dla drożdży - 5 g - 5 zł
    W miarę precyzyjna waga - 15 - 30 zł
    Igła ze strzykawką - 1zł
    Suchy ekstrakt słodowy ekstra jasny 100g - 10zł
    Probówki na skosy (3 szklane wielorazowe lub 20 jednorazowych) - 15 zł
    Szalki petriego (25 sterylnych lub 3 szklane wielorazowe) - 15 zł
    Zlewka do wylewania podłoża w szalkach - 5 zł
     
    Sprzęt potrzebny do propagacji. Jeżeli zdecydujesz się na najprostszą metodę opisaną w części drugiej poradnika to wystarczą słoiki. Jednak namawiam Cię na zakup mieszadła i kolb - czas i jakość propagacji bardzo jest znaczna w takim przypadku będzie to wydatek 150 zł.
    Mieszadło - 100zł gotowe (sprowadziłem z Chin, samoróbka z wiatraczka też się nada)
    Kolba 250 ml - 5-10 zł
    Kolba 2l - 40-50 zł (lepiej kupić 3 litrową, wtedy będziesz mógł startować mocne piwa bez cienkusza)
    Sterylizacja - szybkowar, ceny od 150 zł
     
    Jeżeli nie masz nic na stanie, to koszt jest niemały, około 400 zł. Jeżeli warzysz już od jakiegoś czasu, to dziwnym trafem wiele z wymienionych narzędzi będziesz miał. Koszty w Twoim przypadku musisz policzyć sam. Mieszadło możesz zrobić też tanio np z wiatraczka. Możesz też skonstruować bardziej stabilne z ogólnie dostępnych części (jak jesteś zainteresowany odezwij się powiem co i jak).
    Na zakończenie
    Jest to już ostatnia część poradnika na temat banku drożdży w domowych warunkach. Opisałem chyba najczęściej używane metody przez piwowarów. Pominąłem płukanie gęstwy, ponieważ jest świetnie opisane na naszym wiki. Płukaną gęstwę można przechowywać bardzo długo w lodówce, chyba nie boję się już powiedzieć, że w odpowiednich warunkach 2-3 miesiące. Z gęstwą nie płukaną już tak kolorowo nie jest. Czas życia drożdży bardzo mocno zależy od środowiska w którym żyją. Alkohol nie służy żywotności drożdży i jest głównym czynnikiem wpływającym na ich kondycję w czasie [2].
     
    Odpowiem jeszcze na pytanie które pojawiło się już przy pierwszej części i zwlekałem z odpowiedzią. Po co w ogóle piszę te poradniki? Miałem i mam ukryty cel. Chciałem przekonać Cię, abyś uwarzył piwo na drożdżach płynnych i poczuł różnicę przy wielu stylach. Główną barierą jest cena oraz dziwne przekonanie, że są trudne. Poradniki poruszyły tematy nie tylko samego banku ale również starterów i propagacji. Dzięki własnemu bankowi, a zwłaszcza bardzo taniej i łatwej metodzie opisanej w części pierwszej poradnika, będziesz mógł obniżyć koszty użycia drożdży płynnych do poziomu suchych. Pozbędziesz się też tej niewygody, warzenia styli na tej samej gęstwie po sobie. Mówię o pasażach w stylu hefeweizen, roggenbier, dunkelweizen. Jak już jesteś przekonany to dodatkowo zyskujesz czas. Nie musisz już przelewać piwa na ‘cichą’ po to by odzyskać gęstwę. Bez przelewania na ‘cichą’ zmniejszasz ryzyko zakażenia i co jest ważne nie wystawiasz młodego piwa na działanie tlenu, jakość się podnosi. Plany warzelnicze Ci się pokrzyżują? mała strata, będziesz mógł dowolnej chwili rozpropagować drożdże z banku. Może w długiej perspektywie wpłyniemy na rynek i sklepy zaczną sprowadzać ciekawsze szczepy i małe zestawy do soli fizjologicznej.
     
    Dziękuję!
     
    Jak zauważyłeś jakieś błędy to proszę daj mi znać, poprawię. Będę również bardzo raz z wszelkiego rodzaju porad oraz optymalizacji, które mógłļym wprowadzić. Nie mam wykształcenia ani chemicznego ani biologicznego a błądzić jest rzeczą ludzką.
    Jeżeli jeszcze nie czytałeś, to może zaciekawi Cię:
    część pierwsza poradnika, chyba najłatwiejsza i najtańsza metoda prowadzenia banku drożdży. Prawie wszystko kupisz w aptece.
    część druga poradnika, nauczysz się sterylizacji w warunkach domowych oraz jak rozpropagować drożdże z własnego banku.
    część trzecia poradnika, mrożenie drożdży pozwoli Ci przechowywać je bardzo długo i użyć niezwykle szybko.

     
    Bibliografia
    Przepraszam, nie jest pełna - jak uporządkuje to dodam pozostałe odnośniki.
     
    Yeast: The Practical Guide to Beer Fermentation, 2010, Chris White, Jamil Zainasheff
    Brewing Engineering (2nd edition), 2013, Steven Deeds
    http://www.labobaza.pl/download/artykulplik/zamrazanieprzechowywaniematerialubiologicznego.pdf
    https://www.youtube.com/channel/UCXvq5pgCFcM0Fvp7_ty_C9A
    http://www.homebrewtalk.com/showthread.php?t=35891
    https://www.whitelabs.com/beer/yeast-storage-and-maintenance-0
    https://eurekabrewing.wordpress.com




     
  15. Super!
    DanielN otrzymał(a) reputację od Gemin w Bank drożdży piwowarskich w domowych warunkach 3/4 - mrożenie   
    Bank drożdży piwowarskich w domowych warunkach 3/4 - mrożenie
     
    Przeczytanie poradnika zajmie Ci około 25 minut. Miłej lektury.
     
    Na wstępie chciałbym podziękować forumowiczom (kolejność alfabetyczna): BretBeermann, B.K., czeburaszka710, Dr2, Maciejeq, Matros, Mrzon,  Pan Łyżwa,  Undeath,  Wajcha. To oni dbali o część stylistyczną i merytoryczną. Metodą zainteresował mnie czeburaszka710, było to ponad rok temu. Również sprawdził tą część poradnika pod kątem merytorycznym.
     
    Poradnik w dużej mierze opiera się o książkę Yeast: The Practical Guide to Beer Fermentation [1]. Sam proces jest dostosowany do domowych warunków. Mało z nas ma wirówki oraz mechaniczne pipety w swoim warsztacie.  Zamiast tego wystarczą bardziej prymitywne narzędzia.
     
    Zanim zaczniesz część trzecią proszę zapoznaj się z częścią pierwszą, w której opisuje chyba najprostszą metodę (zapożyczoną od Matrosa). Zapoznasz się również z podstawowym sprzętem potrzebnym do założenia własnego banku. Metoda mrożenia wymaga sterylizacji, którą opisałem w części drugiej.
     
    Mrożenie drożdży jest metodą podobną do przechowywania w soli fizjologicznej czy też parafinie. Aby drożdże wytrzymały proces mrożenia muszą mieć zapewnione odpowiednie warunki. Podczas zamarzania woda w pożywce, w której przebywają drożdże krystalizuje się i uszkadza komórki drożdżowe. Aby temu zapobiec trzeba odpowiednio przygotować roztwór, który pomoże drożdżom przeżyć w arktycznych warunkach. Drugi czynnik, który niekorzystnie wpływa na witalność w czasie składowania to wahania temperatury. Nowoczesne zamrażarki z technologią no-frost właśnie takie wahania mają. Aby im przeciwdziałać koniecznie trzeba podnieść bezwładność cieplną banku drożdży. Dla banku trzeba zrobić sejf, czyli czyli pudełko izolacyjne (styropian, styrodur) oraz koniecznie wkład mrożący wewnątrz.
     
    Drożdże przeznaczone do mrożenia muszą być w dobrej kondycji. Obowiązkowo trzeba wykonać starter z pożywką. Drożdże uzupełnią zapasy glikogenu i trehalozy[1], co skutkuje większą przeżywalnością komórek podczas zamrażania.
     
    Sukcesywnie przenoszę drożdże ze skosów (w kolejnej części poradnika) do zamrażarki. Przekonałem się do tej metody, gdy bez problemów, po 10 miesiącach składowania, uruchomiłem szczep wlp300. Szczepy do piw pszenicznych jakim jest wlp300 są uznawane za trudne w bankowaniu, głównie ze względu na dość wysokie prawdopodobieństwo mutacji w czasie. Mrożenie spowalnia metabolizm a co za tym idzie zmniejsza prawdopodobieństwo mutacji.
     
    Nie będę ukrywał, że metoda ma spory koszt wejścia. Ale za to na plus przemawia niski koszt utrzymania banku. Metoda moim zdaniem stanowi dobrą wypadkową między solą/parafiną a skosami. Czas przydatności jest dłuższy jak skosów a sama procedura jest niewiele trudniejsza od soli fizjologicznej.

     
    Wymagany sprzęt.
    Twój warsztat pracy zacznie przypominać laboratorium. Sprzęt laboratoryjny nie lubi kurzu, zatem zaopatrz się również w pudełko gdzie będziesz mógł wszystko trzymać.
     
    Krioprobówki
    Probówki małej pojemności, najczęściej nie przekraczającej 2 ml mają tę cechę, że wytrzymują bardzo niskie temperatury (nawet poniżej -80°C). Moim zdaniem, najwygodniejsze są probówki o pojemności 1,5 - 2 ml z zakrętką. Na zdjęciu widzisz probówkę o pojemności 2 ml z zakrętką wyposażoną w uszczelkę.

    Pojemność 2 ml jest na tyle duża, że wygodnie operuje się pipetą.
     
    Zwróć uwagę aby krioprobówki były autoklawowalne, bo będą musiały przejść proces sterylizacji w szybkowarze.
     
    Zamiast probówek zakręcanych możesz wybrać tańsze Eppendorfa. Są wymieniane w literaturze i są sporo tańsze od tych zakręcanych.
     
    Ilość probówek zależy od tego ile będziesz chciał przechowywać szczepów. Nie opłaca trzymać się więcej jak 3-4 próbki na szczep bo szybko skończy Ci się miejsce. Oczywiście jeżeli masz ulubiony szczep, którego najczęściej używasz to dostosuj ilość do potrzeb.

     
    Pompka do pipet i jednorazowe sterylne pipety.
    Pipeta służy do transferu drożdży z jego źródła (np. dedykowany starter) do krioprobówki. Bardzo podnosi komfort i skraca czas pracy. Pompkę obsługujesz jedną ręką i bardzo dokładnie dozujesz porcje. Pipeta nie jest sprzętem wymaganym i możesz zamiast używać sterylnej igły i strzykawki, ale jak już powiedziałem, komfort pracy będzie gorszy.

    Pompka do pipet

    Pipeta jednorazowa
     
    Używam pompki o pojemności 2 ml. W nasadce pompki jest silikonowa uszczelka w którą wtyka się pipetę. Pipeta musi być takiej samej nominalnej wielkości jak pompka. Za mała zassie materiał do pipety i trzeba będzie ją myć i sterylizować. Za duża może cieknąć. Kręcąc rolką tłoczka w dół pobierasz drożdże do pipety, w przeciwną oddajesz. Możesz nabyć znacznie droższą pipetę mechaniczną nawet z regulacją pojemności kanału, ale do celów piwowarskich będzie to chyba przerost formy nad treścią. W każdym bądź razie nie bronię, w końcu to hobby.

     
    Gliceryna.
    Gliceryna jest środkiem, który przeciwdziała lize. Bardziej obrazowo, pełni rolę krioprotektanta  i nie dopuszcza, aby błona komórkowa drożdży została rozerwana przez ciśnienie osmotyczne. Gliceryna zmniejsza ciśnienie osmotyczne przez co przeżywalność komórek jest znacznie większa.

    Używam czystej gliceryny roślinnej. Receptura medium (ośrodka w którym będą mrożone drożdże) będzie również oparta o czystą glicerynę. Jeżeli masz powiedzmy 85% to musisz przeliczyć i dodać jej odpowiednio więcej, również wtedy powinieneś skorygować ekstrakt pożywki, bo zostanie rozcieńczony.


     
    Kwas askorbinowy
    Kwas askorbinowy lub jak wolisz witamina C. W aptece nie znalazłem czystej witaminy C, więc kupiłem kwas w sklepie internetowym w postaci proszku. Kwas askorbinowy w medium będzie chronił lipidy w membranie drożdży przed utlenianiem. W skrócie pełni rolę przeciwutleniacza [1].

    Z użyciem kwasu askorbinowego wiąże się taki problem, że potrzebujesz go bardzo niewiele 1 gram na litr. Jednorazowo przygotowując medium do mrożenia pożywki kilka mililitrów. Aby odmierzyć dziesiąte części grama musisz mieć precyzyjną wagę (od 30 zł z kosztami przesyłki) lub przygotować większą ilość pożywki (1g odmierzy waga, której używasz do chmielu), podzielić ją na probówki i wysterylizować. Nadmiar użyć do następnego startera.
     
    Pożywka
    W najprostszym wydaniu jest to brzeczka wraz z pożywką dla drożdży. Zamiast brzeczki możesz używać YPD (jest często wymieniany w literaturze).
    Pożywkę przygotowuję z suchego jasnego ekstraktu słodowego, oraz pożywki dla drożdży piwowarskich. Kolejny raz przydaje się precyzyjna waga. Opakowanie 100 g ekstraktu słodowego i 5 g pożywki wystarczy na długo.
     
    Lampa spirytusowa
    Lampa spirytusowa w trakcie palenia powoduje ruch powietrza od dołu do góry. W zależności od wysokości i stabilności płomienia tworzy coś w rodzaju komina powietrznego w promieniu kilku centymetrów. Prąd powietrza nie pozwala mikrobom opaść. Zatem jak masz otwarte probówki, szalki, pożywkę ryzyko wpadnięcia mikroba jest dużo mniejsze. W otoczeniu lampy musisz wykonywać powolne ruchy, by nie wytwarzać wirów. Do lampy potrzebujesz też zapalniczki, polecam piezoelektryczną, docenisz jak będziesz podpalał knot w rękawiczkach nitrylowych.

     
    Rękawiczki nitrylowe (winylowe lub lateksowe)
    Jak pisałem już w pierwszej części poradnika. Kup rękawiczki o rozmiar mniejsze jak nosisz normalnie. Trochę trudniej je założyć, ale za to ściśle przylegają do dłoni i wygodniej się pracuje.

    Rękawice nitrylowe są nieco wytrzymalsze.
     
    Maseczka chirurgiczna.
    Wstrzymywanie oddechu przy transferach jest dobrą metodą, ale maseczka poprawia komfort pracy. Najbardziej opłaca się zakup w paczkach po 50 sztuk. Maseczka z jednej strony ma drucik, jest to jej góra. Zaciśnij drucik na nosie, przestaniesz dmuchać na oczy i  okulary nie będą parowały.

    Pudełko styropianowe
    Używam pudełka wykonanego ze styroduru. Dodatkowo w środku mam dwa wkłady chłodzące na górze i na dole. Zwiększa to bezwładność cieplną i wahania temperatury są mniejsze. Pudełko musi być wykonane z jakiegoś materiału termoizolacyjnego, zwykły styropian będzie również dobry. Użytkownik @B.K. się zreflektował, że zrobi poradnik: Jak zrobić lepsze pudełko od mojego. Moim zdaniem jest to chowanie urazy, po tym jak nie oddałem mu jeszcze jego pudełka po drożdżach Fermentum Mobile , trzymam kciuki.


     
    Środek dezynfekujący z atomizerem
    Podaję nazwy własne z których korzystam. Głównie jest to StarSan, środki, które są szybsze w działaniu to środki oparte na alkoholu (Mexipol, Desprey, Spirytus Medyczny 70%)
     
    Mieszadło magnetyczne z mieszadełkiem
    Mieszadło magnetyczne bardzo dobrze natlenia brzeczkę co za tym idzie namnażanie drożdży jest szybsze. Mieszadło magnetyczne możesz zrobić sam z wentylatora (potrzebujesz wentylatora stosunkowo silnego o obrotach nie większych jak 1800 obr/min) . Lub kupić od naszych przyjaciół z dalekiego wschodu (koszt ~100 zł wraz z teflonową pastylką, niestety około dwóch miesięcy czekania). Nie kombinuj z mieszadełkiem (rdzeniem, pastylką) własnej roboty, kup ją. Uniwersalny wymiar mieszadełka to 30 mm x 8 mm, dobrze się sprawuje w małych jak i dużych kolbach. Musi być w teflonowej osłonce, wytrzyma warunki panujące w szybkowarze. Przeniesienie napędu odbywa się na zasadzie sił pola magnetycznego. Mieszadełko podąża za rotującym polem magnetycznym tym samym wytwarza wir w kolbie. Pod płytą mieszadła najczęściej jest obracający się magnes trwały (drogie modele mają układ cewek). Lekki wir w naczyniu pozwala rozprowadzać tlen. Również pozwoli wypycha gromadzący się dwutlenek węgla i pobiera nowe dawki powietrza. Same plusy. Drożdże na mieszadle namnażają się o wiele szybciej (wg literatury nawet do 4 razy szybciej jak w klasycznym starterze z potrząsaniem).
     
    Jak jesteś ciekawy jak wygląda mieszadło Intllab™ kliknij w poniższy link. Na prośbę forumowiczów zamieściłem również jego wnętrze, jako bonus nagrana praca.
     
    Lub jeżeli masz trochę majsterkowicza w sobie jesteś w stanie zrobić mieszadło sam: 
     
    Probówka typu falcon (50ml)
     
    Większa probówka jest potrzebna, aby zrobić dedykowany starter. Jej stożkowe dno pomoże zbić drożdże na dnie oraz pobrać  gęstwę z minimalną ilością pożywki. Dla takiej probówki będziesz musiał wykonać stabilny stojak. Możesz użyć kawałka styropianu, drutu miedzianego, lub nawet folii aluminiowej.
    Probówki możesz kupić w wersji stojącej, ale i tak stojak będziesz musiał wykonać bo są wywrotne.

    Taką probówkę możesz sterylizować kilkukrotnie.
     
    Przygotowanie dedykowanego startera (krok 1/3)
    Aby przygotować starter wykorzystuję dwa źródła. Pierwsze to drożdże prosto z paczki, drugie z agaru (z posiewu na szalce Petriego albo własne skosu). Metody agarowe omówię w następnym poradniku, dlatego skupię się na pierwszym źródle czyli paczka prosto od producenta.
     
    Paczka drożdży będzie musiała być naruszona, zatem przygotowania zaczynam dzień przed warzeniem. Na początku przygotowuję klasyczny starter dla drożdży płynnych. Przygotowuję również dedykowany starter o pojemności 30 ml w probówce 50 ml, ten posłuży jako źródło drożdży do mrożenia:
    Do probówki o pojemności 50ml dodaję 3g suchego ekstraktu słodowego, pożywkę dla drożdży piwowarskich dopełniam do 30 ml. Krótko mówiąc brzeczka około 10°P z pożywką w ilości około 30 ml.
    Zakręcam szczelnie, dokładnie mieszam i sterylizuję w szybkowarze. Probówka musi stać pionowo, nie może się przewrócić, poluzuj nakrętkę.
    Wymieszaj opakowanie drożdży, (jeżeli opakowanie ma aktywator, to aktywację wykonaj odpowiednio wcześniej.
    Zakładam rękawiczki, maseczkę i dezynfekuję ręce i opakowanie drożdży.
    W otoczeniu lampy przebijam się sterylną igłą i strzykawką (2 ml)  w górnej części opakowania. Ociągam maksymalnie 0,1 - 0,2 ml. Opakowanie trzeba przechylić tak, aby drożdże się nie wylały i jednocześnie igła była zanurzona.
    Opakowanie z drożdżami odstaw w pobliżu lampy.
    Drożdże ze strzykawki przenieść do małego startera - wstrzyknij tylko 0.1 ml w zupełności wystarczy.
    Zakręcam mały starter i odstawiam.
    Resztę opakowania drożdży przenoszę do dużego startera zgodnie z instrukcją producenta.
    Dokręć mały starter i porządnie wymieszaj w celu natlenienia.
    Zdezynfekuj fiolkę, nie zapomnij zaaplikować środka pod nakrętkę.
    Odstawa na kilka minut (w międzyczasie warto posprzątać). Po tym czasie poluzuj nakrętkę probówki. Drożdże będą pracowały i muszą mieć ujście CO2.
    Tak przygotowany starter trzymaj w ciepłym i ciemnym miejscu przez 48 godzin zabezpieczony przed przewróceniem. Czas startera przeznaczonego do mrożenia jest dłuższy ze względu na to, że drożdże muszą odbudować zapasy oraz się rozpropagować.
    Po 48h probówkę zapakuj w czystą foliową zdezynfekowaną od wewnątrz i odstaw głęboko do lodówki na kolejne 48 godzin (zabezpiecz go przed przewróceniem, możesz zamiast torebki użyć większego słoika również zdezynfekowanego). W tym czasie drożdże osiądą na dnie stożkowatej probówki. Zmienią też ścieżki metaboliczne przygotowując się na zimę.


    Przygotowanie dedykowanego startera jak zauważyłeś zajmuje 4 dni, ale jest bardzo proste i wymaga niewiele. Celem jest uzyskanie zbitych silnych drożdży przygotowanych do warunków syberyjskich. Dlatego też propagacja nie odbywa się w ciągłych warunkach tlenowych.
     
    Na zdjęciu widać formujący się stożek drożdżowy (zdjęcie robiłem po około godzinie w lodówce). Po 48 godzinach pożywka będzie klarowna a sam stożek o wiele większy. Na dnie ciemniejszy obszar są to osady białkowe ze startera oraz sporo martwych drożdży. Dlatego przy pobieraniu próbki ze stożka staraj się celować w jego środek.

     
    Medium do mrożenia - przygotowanie krioprobówek (krok 2/3)
    Jak już wcześniej napisałem, drożdże w zamrażalniku muszą przebywać w odpowiednim medium, które zabezpieczy błony komórkowe drożdży przed rozerwaniem jak temperatura zacznie spadać. Potrzebujesz jego bardzo niewiele bo 100 ml wystarczy na przygotowanie około 50 krioprobówek o pojemności 2 ml. Trudno też jest przygotować mniej, ze względu na to, że małą ilość kwasu askorbinowego. Dlatego warto zaopatrzyć się w dodatkowe probówki 15 ml typu falcon i nadmiar medium podzielić a następnie wysterylizować. Jak będziesz chciał mrozić kolejne szczepy to będziesz miał już gotowy roztwór. Możesz również kupić większą ilość krioprobówek i medium rozdzielić między nie. Druga opcja oszczędzi CI w przyszłości pracy (bo  probówki będą sterylne i gotowe do użycia), ale koszty się zwiększa.
     
    Przygotowanie medium: 50 g czystej gliceryny, 0.1 g kwasu askorbinowego, 5 gram suchego ekstraktu słodowego, 45 ml wody, pożywka dla drożdży piwowarskich (ekstrakt słodowy i wodę możesz zastąpić niechmieloną brzeczką o ekstrakcie około10°P).
    Mieszaj i podgrzewaj, aż wszystko się rozpuści. Możesz to robić w kolbie/menzurce/szklance w kuchence mikrofalowej. Uważaj, bo roztwór ma tendencje do kipienia. Równie dobrze możesz podgrzewać na gazie bezpośrednio w kolbie, lub w małym garnku.
    Napełnij krioprobówki roztworem do objętości 4/5. Muszą zmieścić się jeszcze drożdże.
    Wysterylizuj krioprobówki w szybkowarze w pozycji pionowej z poluzowanymi zakrętkami.
    Poczekaj jeszcze kilka minut po samoistnym otwarciu się szybkowara  i dokręć wszystkie krioprobówki. Jeżeli zrobisz to za szybko to mogą się zdeformować.
    Probówki są gotowe do użycia kiedy ostygną.
     
    Masz gotowe medium do mrożenia. Czas rozpocząć procedurę mrożenia.
    Procedura mrożenia (krok 3/3)
    Przygotuj miejsce pracy. Pokój musi być czysty, przewietrzony, bez przeciągów. W okresie grzewczym dla pewności zakręć kaloryfery. Wyeliminuje to prądy powietrzne.
    Zdezynfekuj stół. Po kilku minutach wytrzyj do sucha jeżeli jest to potrzebne.
    Delikatnie wyjmij starter z lodówki, zdejmij z niego torebkę i dla pewności dodatkowo zdezynfekuj. Drożdże w stożku muszą być zbite.
    Wystaw potrzebny sprzęt lampę spirytusową (zdezynfekuj ją i wytrzyj do sucha ręcznikiem papierowym jeżeli to konieczne), pompkę do pipet, pipetę sterylną, dedykowany starter, krioprobówki z medium (również je zdezynfekuj), rękawiczki nitrylowe, maseczkę, zapalniczkę.
    Upewnij się, że wszystko jest suche i uruchom lampę na minutę przed rozpoczęciem pracy w celu oczyszczenia otoczenia.
    Załóż maseczkę i rękawiczki. Zdezynfekuj ręce daleko od lampy.
    Poluzuj całkowicie nakrętkę w probówce z drożdżami, ale nie ściągaj jej jeszcze.
    Poluzuj  nakrętki w przygotowanych w krioprobówkach (krioprobówki są wywrotne, warto kupić lub zrobić stojak). Krioprobówki ustaw w rządku przed lampą.
    Rozerwij listki opakowania sterylnej pipety i nasuń pompkę.
    Weź pompkę z pipetą (wszystko w pobliżu lampki), drugą ręką zdejmij pokrywkę ze źródła drożdży i ją odłóż. Zassaj drożdże ze środka ubitego stożka. Rób to powoli, aby nie nabrać zbyt wiele pożywki. Potrzebujesz dosłownie kroplę drożdży na jedną krioprobówkę.
    Wolną ręką (w tej w której nie masz pipety) zdejmij nakrętkę z krioprobówki, zaaplikuj kroplę z pipety (wymaga nieco wprawy), załóż nakrętkę i przejdź do kolejnej.
    Odłóż pipetę, dokręć krioprobówki i je wytrząchaj.
    Odręć dla pewności zakrętki taśmą izolacyjną (winylową, parafilmem).
    Permanentnym cienkim markerem zapisz datę oraz szczep.
    Przenieś fiolki do lodówki na kilka godzin. W domowych warunkach lepszą przeżywalność osiągniesz jak drożdże będą traciły 1°C/godzinę. Aby zbliżyć się do tych warunków, możesz krioprobówki umieścić w termosie. Przetrzymać termos w lodówce kilka godzin, następnie przenieść go do zamrażarki. Po 12-24 godzinach w zamrażarce sprawnie umieść je w dedykowanym pudełku. Z tej metody korzysta czerburasza710. Jeżeli nie masz termosu to przejdź do następnego punktu.
    Przenieś krioprobówki z lodówki do zamrażarki. Składuj je w pudełku termoizolacyjnym (np. styropian) koniecznie z wkładem mrożącym.
     
    Na poniższym filmie jak to wygląda. Użyłem tylko jednej fiolki dla pokazania procesu. Wybaczcie jakość, nagrywałem przy sztucznym oświetleniu, jak będą dłuższe dni i czas mi pozwoli to nagram jeszcze raz. Fiolka jest wysterylizowana z medium. Jako źródło drożdży dedykowany starter w kolbie 250 ml, przetrzymany dwa dni w lodówce.
     
     
    Użycie zamrożonych drożdży
    Przygotuj sterylny mały starter. Probówka 50 ml będzie w sam raz. Startera potrzebujesz około 30-35 ml o ekstrakcie 5-6°P. Warto dodać też pożywkę.
    Zdezynfekuj blat, wytrzyj go do sucha, wystaw lampę i podpal knot.
    Przygotuj większą miskę/garnek z wodą o temperaturze około 35-38°C.
    Wyjmij krioprobówkę, że szczepem który chcesz użyć. Zaciśnij ją szczelnie w dłoni i włóż do ciepłej wody. Po kilku minutach probówka nabierze temperatury otoczenia. Ile czasu? - to zależy jakich krioprobówek użyłeś i ich temperatury przy wyjęciu. Obserwuj płynność medium. Probówki te ze zdjęcia są gotowe po 2-3 minutach ocieplania.
    Wytrzyj ręce i krioprobówkę, działaj szybko, ale bez nerwów.
    Załóż rękawiczki, zdezynfekuj ręce z krioprobówką, użyj środka na alkoholu, na ciepłych dłoniach środek szybko się ulotni.
    Poluzuj nakrętkę startera oraz na krioprobówki, tak aby można było je łatwo zdjąć jedną ręką.
    Na bezdechu przelej próbkę drożdży do startera.
    Zakręć szczelnie starter i porządnie wytrząchaj.
    Zdezynfekuj starter, nie zapomnij pod zakrętką
    Po kilku minutach (możesz w międzyczasie posprzątać) zluzuj lekko nakrętkę startera, CO2 musi mieć ujście. Po 24 godzinach możesz dalej propagować drożdże zgodnie z drugą częścią poradnika.
     
    Jeżeli wszystko przemyślisz i zrozumiesz zasadę, to metoda jest bardzo prosta. Swoje szczepy (mam ich niewiele) przenoszę sukcesywnie ze skosów do zamrażalnika. Dla mnie największą zaletą jest czas przechowywania oraz szybkie uruchomienie drożdży z banku. Również muszę liczyć się z miejscem a pudełko termoizolacyjne zajmuje niewiele miejsca w zamrażarce. Minus to początkowe koszty, jednak nie od razu Rzym zbudowano i w kilka miesięcy jesteś w stanie skompletować potrzebny sprzęt. Wadą metody jest to, że trudno podzielić się takimi drożdżami z innym piwowarem, trzeba wykonać stater. Druga wada to podobnie jak z solą fizjologiczną - nie widać w tej metodzie kontaminacji. Jednak przy pobieraniu próbek prosto z paczek od producenta i sterylizacji nic złego nie powinno się przytrafić.
     
    Mam nadzieję, że się wam podobało. Jeśli macie pytania lub znaleźliście błędy, to proszę wysyłajcie wiadomości prywatne lub pytajcie się w komentarzach. Na podstawie pytań zbuduję FAQ. Jeżeli nie chcecie niczego przegapić, to zacznijcie obserwować temat albo mój profil. Przycisk obserwowania masz na górze. Jak przewiniesz to nie zapomnij zerknąć jeszcze raz na ludzi, którzy pomogli mi w redagowaniu tego poradnika.
     
    To już koniec, do zobaczenia w kolejnej części poradnika, będzie o agarze i skosach.
     
    Jeżeli artykuł będzie cieszył się zainteresowaniem/reakcjami/obserwowaniem/wiadomościami podobnie jak części przednie, to postaram się nagrać film (w podobnym stylu jak w  części pierwszej poradnika).
     
    Dziękuję!
     
    FAQ: 
    Czy możesz wstawić zdjęcie pudełka do przechowywania drożdży? Wstawiłem opisie sprzętu, dodałem też suchy dowcip. Czy możesz zrobić kosztorys jak w poprzednim poradniku? Podobnie jak poprzednio, bez kosztów dostawy i opcja pesymistyczna.
    Mrożenie: pompka do pipet 2 ml - 25 zł,  pipety 20 sztuk - 25 zł, czysta gliceryna 250 ml - 5 zł, krioprobówki 25 sztuk - 20 zł, kwas askorbinowy 100 g - 20 zł, rękawiczki 50 par - 15 zł, probówka falcon 50 ml 10 sztuk - 15 zł, lampa spirytusowa 20 zł, pożywka dla drożdży 5 zł, DME (dry malt extract, suchy ekstrakt słodowy) 200 g - 15 zł, środek dezynfekujący z atomizerem 15 zł
    Propagacja: Mieszadło magnetyczne z mieszadełkiem - 100 zł, kolba 250ml - 10 zł, kolba 2l - 45 zł.
    Sterylizacja: szybkowar, minimum 150zł.
    Łącznie w wariancie pesymistycznym około 450zł. Od tej ceny musisz oczywiście odliczasz wszystko co masz nastanie. Jest to duży wydatek jednorazowy, jednak jak spojrzysz na cenę w pryzmacie kilku miesięcznym jest do zaakceptowania.  
     
    Bonus - metoda uproszczona, z mniejszą ilością sprzętu
     
    Proszę zapoznaj się najpierw z artykułem zanim zaczniesz czytać dalej.
    Metoda ta wymaga mniej sprzętu i jest nieco szybsza. Nie potrzebuje pipet, wystarczą sterylne strzykawki (2 ml i 5 ml) oraz dwie sterylne igły (używam 1.6 mm x 40 mm). Zacząłem stosować ją od niedawna, więc jeszcze nie wiem czy ma jakiś negatywny wpływ na witalność drożdży, raczej nie powinna.
    Zaczynamy.  W probówkach o pojemności 10 - 15 ml przygotowuje medium i startery. Plastikowe falcony jak najbardziej się nadadzą. Sam najczęściej korzystam ze szklanych. Falcon ma tą zaletę, że ma szerszy wlot i wygodniej operuje się strzykawką i igłą. Zerknij na zdjęcie poniżej. W plastikowym pudełku trzymam probówki. Te z literką S to startery około 10 ml brzeczki 5°P. Te z literkę M to przygotowane medium do mrożenia, opis jak zrobić masz wyżej w artykule. Są wysterylizowane w szybkowarze. Przygotowuję ich więcej i jak się kończą o robię kolejną partię. To co widać to lekko nadgryziony zapas półroczny. Przy okazji sterylizuję również puste krioprobówki. Pamiętaj aby sterylizować krioprobówki z minimalną ilością wody w środku, daje jakieś 0.5 kropli oraz zakrętki muszą być poluzowane. Woda wewnątrz będzie w postaci bardzo gorącej pary która zdezynfekuje ją od wewnątrz.
     

     
    Kupiłeś drożdże płynne, przyszła Ci packa. Załóżmy że są to White Labs w opakowaniu Pure Pitch. Na dzień przed warzeniem przygotowujesz duży starter, do niego przelejesz drożdże. Bierzesz również fiolkę ze sterylnym starterem. Procedura wygląda tak.
    Starter:
    Dezynfekujesz blat i rozstawiasz na nim sprzęt. Zgodnie z tym co opisałem w artykule. Podpasz też knot lampy spirytusowej. Wszystkie działania robisz w promieniu 10 - 15 cm od płomienia. Zakładasz rękawiczki, maseczkę, dezynfekujesz dłonie. Dokładnie też dezynfekujesz fiolkę ze starterem i opakowanie drożdży. Opakowanie musi być zdezynfekowane bo będziesz się przez nie przebijał. Jeżeli jest to fiolka zakręcana to po prostu będziesz ją odkręcał. W otoczeniu lampy przebijasz się świeżo wyjętą sterylną igłą i sterylną strzykawką 2 ml. Przebijasz się możliwie wysoko aby drożdże potem nie wyciekały. Pobierasz około 0.1 maksymalnie 0.2 ml. Tak dobrze przeczytałeś 2 kreseczki na strzykawce 2 ml w zupełności wystarczą. Wstrzykujesz drożdże do probówki ze starterem. Resztę drożdży otwierasz i przelewasz do dużego startera. Taki starter trzymasz 48-72 godziny w temperaturze pokojowej lub nieznacznie wyższej w pozycji pionowej. To odżywi drożdże. Nie zakręcaj ciasno nakrętki bo ciśnienie może narobić biedy. Po tym czasie zdezynfekuj, dokręć zakrętkę. Zapakuj probówkę w torebkę foliową i do lodówki na 48h. Do torebki też zapakuj fiolkę z medium. Aby miały te same temperatury. Pracy tylko ciut więcej jak ze zrobieniem klasycznego startera.  
    Mrożenie:
    Będziesz potrzebował sterylnej strzykawki 5 ml, sterylnej igły, użyj jak najgrubszej, powtarzam się ale najlepsze są 1.6 mm x 40 mm. Krioprobówki. Jedna pełna strzykawka z podziałką do 5 ml jest w stanie napełnić ich od napełnia ich od 3 do 6. W zależności jakie masz krioprobówki (1,5 ml czy 2). Polecam nie przekraczać 3 bo i tak przy domowym warzeniu tego nie przerobisz. No chyba, że masz jakiś szczep którego częściej używasz.
    Przygotuj środowisko pracy. Zdezynfekuj blat. Podpal knot lampy spirytusowej. Wyjmij z lodówki i torebki probówki ze starterem i medium. Wstaw je pionowo do zlewki/szklanki. W starterze będziesz miał już zbite drożdże na samym dnie. Rękawiczki na dłonie, maseczka na twarz. Przygotuj pustą zlewkę/szklankę i zdezynfekuj ją. Zdezynfekuj również dłonie, probówki z medium i starterem oraz krioprobówki. Odkręć starter i medium. Zakrętkę ze startera odłóż w pobliżu lampy gwintem do góry.  Rób wszystko w otoczeniu płomienia lampy. Zlej do przygotowanej zlewki/szklanki pożywkę startera, tak aby na dnie zostały praktycznie drożdże. Przelej medium na drożdże. Zakręć i dokładnie wymieszaj. Teraz sterylną strzykawką i igłą odciągnij pełną zawartość (do strzykawki z podziałką do 5 ml możesz pobrać około 6 - 6.5 ml). Taka strzykawka świetnie wchodzi do falcona zatem łatwo pobrać odpowiednią ilość. Powoli wstrzykujesz do sterylnych krioprobówek. Krioprobówki zakręcasz, dezynfekujesz, oklejasz taśmą, opisujesz i do lodówki na 24 godziny. Potem szybko przenosisz już do pudełka w zamrażarce.  
    Zauważ, że transferowałeś zimne probówki prosto z lodówki. Zatem wypada robić to sprawnie ale nie w pośpiechu. Torebka foliowa miała za zadanie robić barierę dla bakterii nagromadzonych w lodówce.
     
    Możesz być zainteresowany:
    Część pierwsza poradnika - chyba najprostsza metoda składowania drożdży.
    Część drugia poradnika - propagacja startera, sterylizacja, najprostsza metoda składowania z wykorzystaniem sterylizacji.
    Część czwarta poradnika - skosy, czyszczenie na szalkach Petriego.
     
    Jak widzisz jakieś błędy to proszę daj mi znać. Mam nadzieję, że się wam podobało. Zapraszam do pytań i dyskusji. Jak już spróbujesz i Ci wyjdzie to dodaj komentarz, aby zachęcić innych piwowarów. Ulepszenia i propozycje również są mile widziane. Dziękuję za poświęcony czas. 
  16. Super!
    DanielN otrzymał(a) reputację od eneash w Bank drożdży piwowarskich w domowych warunkach 2/4 - propagacja, sterylizacja, sól fizjologiczna, parafina   
    Bank drożdży piwowarskich w domowych warunkach 2/4 - propagacja, sterylizacja, sól fizjologiczna, parafina
     
    Zanim zaczniesz lekturę, to proszę zapoznaj się z częścią pierwszą poradnika. Jest to opis najprostszej metody przechowywania drożdży.
     
    Przeczytanie poniższego poradnika, nie powinno Ci zająć więcej jak 25 minut.
     
    Jak użyć drożdży z depozytu?
     
    Na wstępie chciałbym podziękować forumowiczom (kolejność alfabetyczna): BretBeermann, B.K., czeburaszka710, Dr2, Maciejeq, Matros, Mrzon,  Pan Łyżwa,  Undeath,  Wajcha. Wyłapali niezliczoną ilość błędów merytorycznych, stylistycznych i gwoli ścisłości jeden ortograficzny (no dobra, liczyłem, było prawie 50 poprawek).
     
    Poradnik powstał na prośbę forumowiczów, dla których nie do końca jasne było jak rozpropagować drożdże z banku. Postanowiłem upiec dwie pieczenie na jednym ogniu. Przy okazji propagacji krokowej omówię również sterylizację w warunkach domowych. Dzięki sterylizacji w dłuższej perspektywie obniżysz koszty banku, bo będziesz mógł sam jałowic sprzęt. Sterylizacja również będzie podstawą do kolejnych części poradnika, mrożenia oraz metod agarowych ('mityczne' skosy).
     
    W części pierwszej poradnika włożyłeś do depozytu pierwsze próbki drożdży. Minęło kilka tygodni i chcesz uwarzyć piwo, co dalej?
     
    Zakładam, że w depozycie trzymasz próbki pod solą fizjologiczną o pojemności 5 ml lub 15 ml. Co odpowiada kolejno około 1 ml gęstwy lub 3 ml gęstwy w naczyniu. Takie ilości są zdecydowanie za małe, aby zaszczepić 20 litrów brzeczki. Drożdże trzeba najpierw rozpropagować (namnożyć), to wymaga trochę czasu. Propagację wykonuje się krokowo, najpierw w mniejszym naczyniu czeka się, aż drożdże nabiorą sił i zdominują środowisko. Taki mini starter przenosi następnie do większego naczynia, aż do momentu kiedy go wystarczająco dużodo zaszczepiania brzeczki. Zakładając, że nie masz mieszadła magnetycznego i przechowujesz swoje drożdże w probówkach 15ml (około 3 ml gęstwy w każdej) to w przeciągu 48-72 godzin jesteś w stanie rozpropagować drożdże do takiej ilości by zaszczepiać brzeczkę o pojemności 20-25 l (ekstrakt 12-13°P). Jeżeli masz depozyty 5 ml (1 ml gęstwy) oraz posiadasz mieszadło magnetyczne to 48 godzin w zupełności wystarczy. Mieszadło znacznie poprawia natlenienie brzeczki a warunki tlenowe sprzyjają namnażaniu. Dodatkowym benefitem jest użycie pożywki bogatej w cynk (do kupienia w sklepach piwowarskich, paczka 5 g wystarczy na wiele starterów). W poradniku opiszę starter dwukrokowy.
     
    Zanim zacznę odpowiem na pytanie, po co w ogóle propagować drożdże w kilku krokach?
    Nie możesz tak małej próbki wrzucić od razu do brzeczki. Fermentacja albo nie ruszy, albo to co uzyskasz będzie wątpliwej jakości. W zdrowej fermentacji chodzi o to by w jej trakcie, drożdże podzieliły się od 2 do 4 razy. Zależy to od szczepu, ekstraktu, temperatury. Drożdże przy małej ilości podziałów nie wyprodukują zbyt wiele ubocznych produktów fermentacji wpływających na smak i aromat. Tych produktów będzie na tyle mało, że drożdże zdążą je zmetabolizować (posprzątają po sobie). Dlatego początkowo propaguje się w warunkach tlenowych, które mocno sprzyjają podziałom. Robisz to w krokach (coraz większych) do momentu uzyskania odpowiedniej ilości witalnych komórek drożdżowych. Starter o wielkości około 1,2 - 1,5 litra i ekstrakcie około 10°P będzie zawierał odpowiednią ilość drożdży górnej fermentacji dla 20-24 l brzeczki.
    Opcja pierwsza - minimum narzędzi.
    Swoją przygodę zaczynałem od słoików. Do tego celu używałem słoików z plastikowymi nakrętkami. Były łatwe w dezynfekcji oraz wytrzymywały pasteryzację. Butelki z szerokim wlotem również się nadadzą, zwróć tylko uwagę aby wlot butelki był szeroki. Ułatwia to sprawne przelanie drożdży z probówki.
     
    Będziesz potrzebował.
    Słoik 0,4-0,5 litra z zakrętką (najlepiej nową niezniszczoną i bez przebarwień).
    Słoik 2 litrowy z zakrętką. Mniejszy słoik będzie miał za mało wolnej przestrzeni i drożdże mogą wybrać się na spacer.
    Brzeczka 5-7°P około 150 ml (może być lekko chmielona do 15 IBU).
    Brzeczka  8-10°P o objętości 1.2 - 1.5 litra.
    Probówkę z depozytu drożdży. Dla tej opcji dobrze bankować w probówkach 15 ml, aby mieć trochę więcej gęstwy na starcie.
    Garnek, na tyle duży aby pozwolił spasteryzować mniejszy słoik.
    Środek dezynfekujący (używałem nadwęglanu sodu - oxi  - jako środka czyszczącego, oraz StarSanu jako dezynfekującego)
    Opcjonalnie pożywka.
     
    Nie używaj brzeczki mocno chmielonej (powyżej 15 IBU), drożdże słabiej się namnażają. Brzeczka lekko chmielona wykazuje właściwości bakteriobójcze.
    Instrukcja dla opcji pierwszej.
    Minimum na godzinę przed użyciem drożdży wyciągnij je z banku w celu ogrzania do temperatury pokojowej (mniej więcej tyle czasu zajmie Ci pasteryzacja i studzenie brzeczki - więc warto ten krok wykonać na początku)
    Wymyj dokładnie i wypłukaj mniejszy słoik.
    Do mniejszego słoika wlej około 150 ml brzeczki  5-7°P (jeżeli masz to dodaj pożywkę wg wskazań producenta najczęściej jest to 2-3 g na 20 l, zatem dla takiej pojemności jest to dosłownie szczypta, około 0,1 - 0,2 g)
    Słoik wstaw do garnka z wodą. Wody musi być tyle, żeby słoik się nie przewracał przy lekkim gotowaniu i nie nabierał wody.
    Upewnij się, że nakrętka na słoiku jest poluzowana, inaczej ciśnienie może uszkodzić naczynie.
    Gotuj na małym ogniu słoik z brzeczką pod przykryciem przez 30 minut.Wyciągnij jeszcze gorący słoiki pozwól mu wystygnąć. Uważaj przy wyciąganiu, bo przykrywka luźno się trzyma. Kąpiel gorącego słoika w zimnej wodzie nie jest najlepszym pomysłem, nie popełniajcie mojego błędu. Jeżeli chcecie zrobić kąpiel poczekajcie 10-15 min aż lekko ostygnie. W trakcie stygnięcia ciśnienie wewnątrz słoika będą się wyrównywało do otoczenia. Do słoika powoli przez lekko rozszczelnioną zakrętkę będzie zasysane powietrze. Drożdże będą go potrzebowały. Dlatego dobrze by było, jakby słoik chłodził się w czystym miejscu. Minimalizujesz w ten sposób ryzyko kontaminacji. Nie zaszkodzi jak zdezynfekujesz na zewnątrz słoik oraz miejsce dookoła.
    Jak brzeczka ostygnie do temperatury około 25°C dociśnij dokładnie zakrętkę i porządnie wytrząchaj słoik (10 sekund intensywnego mieszania i tyle samo przerwy i tak 4-6 razy). W brzeczce rozpuści się sporo tlenu.
    Odstaw słoik i zdezynfekuj ponownie nakrętkę oraz przestrzeń dookoła słoika. Staraj się nie oddychać w kierunku słoika i drożdży. W naszym wydychanym powietrzu mamy sporo bakterii mlekowych oraz kilka innych co lubią cukry.
    Wytrząchaj dokładnie fiolkę z drożdżami, zdejmij z niej taśmę i zdezynfekuj dokładnie całą jej powierzchnię.
    Poluzuj nakrętkę w słoiku, by można było ją zdjąć jedną ręką (ale jeszcze jej nie zdejmuj).
    Poluzuj nakrętkę w fiolce, aby można było ją swobodnie zdjąć (ale nie rób tego jeszcze).
    Na bezdechu i bez pośpiechu. W jednej ręce probówka z drożdżami, drugą zdejmujesz korek z probówki oraz lekko podnosisz zakrętkę słoika. Przelewasz drożdże do słoika.
    Zakręć dokładnie słoik i wytrząchaj kilka sekund.
    Odstaw słoik zdezynfekuj jego powierzchnię i poluzuj nakrętkę. Nie chcesz wstawać w nocy do sprzątania. Słoik trzymaj w ciemnym i ciepłym miejscu.
    Wyćwicz w sobie nawyk aby raz na kilka godzin zamieszać zawartością, aby dodatkowo dotleniać starter.
    Czekasz 24 godziny (kilka więcej na pewno nie zaszkodzi), raz na jakiś czas mieszając. Uważaj aby nie wylać zawartości.
    Po 24 godzinach czas na drugi krok. Jeżeli masz możliwość pasteryzacji 2 litrowego słoika, to powtórz dokładnie tą samą instrukcję, tylko jako fiolka będzie służył Twój starter 150ml a jako większe naczynie słoik 2 litrowy. Jeżeli nie masz to można zrobić to tak.
    Umyj dokładnie słoik 2 litrowy i go wypłukaj. Zalej go po brzegi ciepłą wodą i wsyp dużą dawkę OXI (10g). Woda powinna wyciekać przy wsypywaniu OXI. Trzymaj tak przynajmniej 30 minut. Oddzielnie dezynfekuj przykrywkę (ja trzymałem ją w StarSanie - polecam Ci ten środek, jest bardzo wydajny i skuteczny).
    W międzyczasie gotuj na wolnym ogniu pod przykryciem brzeczkę (1,4 l, jak masz to z pożywką). Gotuj minimum 20 minut. Nie muszę chyba powtarzać, że brzeczka lubi kipieć, dlatego większy garnek będzie wygodniejszy. Pozwól jej ostygnąć przynajmniej 10 minut.
    Wylej oxi ze słoika wypłukaj go i zdezynfekuj środek. Starsan w tym przypadku jest super, bo nie wymaga spłukiwania i jego pozostałości stanowią pożywkę dla drożdży (drożdże go metabolizują odzyskując kwas fosforowy). Nie masz StarSanu, to użyj innego środka bez spłukiwania, oxi w mniejszej dawce też się nada.
    Przelej gorącą brzeczkę do słoika. Zrób to w zlewie na wypadek jakby słoik miał pęknąć. Zakręć słoik, ale na tyle słabo by umożliwić wymianę powietrza.
    Schłódź brzeczkę do 25 stopni.
    Dokręć duży słoik i wytrząchaj go w celu natlenienia (10 sekund trząchania, tyle samo przerwy tak 4-6 razy).
    Zdezynfekuj zewnętrzną część dużego słoika i małego.
    Przelej zawartość małego słoika do dużego (na bezdechu)
    Dokręć duży słoik i ponownie wytrząchaj zawartość.
    Poluzuj nakrętkę i odstaw słoik w ciemne ciepłe miejsce. Raz na jakiś czas zakręć zawartością.
    Po 24-36 godzinach będziesz miał wystarczającą ilość drożdży, aby zaszczepić brzeczkę 20 litrową. Zobaczysz to na dnie słoika. Zaczynałeś od 1ml a teraz masz grubą warstwę drożdży gotowych do dalszej pracy.
     
    Na zakończenie warto powąchać mały słoik. Nie będzie pachniał tak ładnie jak młode piwo. Nie ma się czego bać. Natlenienie pobudza drożdże do namnażania oraz produkcji dużej ilości produktów ubocznych fermentacji. W aromacie będziesz wyraźnie wyczuwalny aldehyd, tlen będzie również wpływał na produkcję diacetylu. Również aromaty siarkowe nie są niczym złym. To co powinno Cię zaniepokoić, to aromaty mocno rozpuszczalnikowe. W skrajnych przypadkach biofilm (taka cienka przezroczysta warstwa na powierzchni). Takie objawy prawie zawsze oznaczają infekcję. W takim wypadku warto zastanowić się, czy zachowałeś odpowiednią czystość w procesie namnażania, lub też czy jesteś pewien swoich próbek w banku.
     
    Mam tendencję do rozpisywania się w szczegółach. Zauważ jednak, że mimo tak dużej ilości punktów sam proces jest prosty. Instrukcja również kładzie nacisk na minimalizację kontaminacji w trakcie pasażu (transferu) drożdży.

     
    Opcja druga - domowe laboratorium
    Drożdże są odpowiedzialne za tę magię, która brzeczkę zamienia w piwo. Aby w warunkach domowych stworzyć drożdżom jak najlepsze warunki trzeba trochę zainwestować w sprzęt. Przy okazji chciałbym zrobić wstęp do sterylizacji w oparciu o szybkowar. Metodę sterylizacji którą opiszę poniżej będziesz również używał do sterylizacji sprzętu jednorazowego. Zapewne wrócisz tutaj jak będę opisywał mrożenie i agar.
    Domowa sterylizacja w szybkowarze
    Szybkowar jest to garnek ciśnieniowy, który w przeciągu 30-40 minut jest w stanie wysterylizować większość sprzętu używanego przy banku drożdżowym (czas liczony od załadowania do wyjęcia). I w takim samym czasie przygotuje pyszną zupę, pozwoli przyrządzić indyka, który będzie soczysty. Ugotuje na parze warzywa a nawet rozgotuje je na papkę z zachowanie większości walorów (jak masz pół roczne dziecko, to wiesz o czym mówię). Te argumenty powinny wystarczyć, aby mieć asa w rękawie w dyskusji na temat zakupu szybkowara.

    Szybkowar występuje w dwóch klasach. O dopuszczalnym ciśnieniu do 100 kPa (1 bar, ~1 atm) to wydatek minimum 150 zł. Właśnie taki model potrzebujesz. Pojemność minimalna to 6 litrów (większy będzie wygodniejszy). Druga klasa szybkowarów ma ciśnienie robocze do 80 kPa i jest sporo tańsza. Jeżeli zdecydujesz się na zakup takiego szybkowara wtedy trzeba dłużej trzymać na ciśnieniu.
     
    Wewnątrz szybkowara panuje nadciśnienie, woda wrze w wyższej temperaturze. W szybkowarach wyższej klasy temperatura sięga około 121°C, podobnie jak w autoklawie.
     
    Zasada sterylizacji jest dość prosta. Do szybkowara wkładasz sprzęt, który chcesz wysterylizować. Wlewasz wodę demineralizowaną (nie powoduje zacieków) minimalnie tyle ile zaleca producent. Ustawiasz szybkowar na największe ciśnienie i od momentu, aż wydobywa się porządna para odliczasz 15-18 minut (jak masz szybkowar niższej klasy to czekasz 35 minut). Wyłączasz źródło ciepła i czekasz aż się otworzy, najczęściej od kilku do kilkunastu minut. Nie otwieraj szybkowara na zasadzie szybkiego spuszczania ciśnienia, bo będziesz miał mocną kondensację (skroplenie) wody w probówkach. Całość nie powinna zająć więcej jak 40 minut.
     
    Kilka zasad sterylizacji w szybkowarze.
     
    Do szybkowara wstawiasz tylko sprzęt który jest autoklawowalny. Musi wytrzymać duże ciśnienie i temperaturę. Probówki typu falcon są autoklawowalne. Szkło które wstawiasz do szybkowara najlepiej jakby było borokrzemowe.
    W autoklawie probówki sterylizuje się razem z roztworami (czy to soli, czy gliceryny, czy parafiny czy też agaru). Duży plus, bo unikasz jednego przelewania,  tym samym ryzyko infekcji jest mniejsze. Probówki muszą mieć poluzowane nakrętki. Inaczej ciśnienie je rozerwie albo w najlepszym przypadku pognie.
    Probówki muszą stać w pozycji jak najmocniej pionowej, dobrze by było jakby się nie stykały. Z drutu miedzianego można zrobić mini statyw. Możesz też wykorzystać menzurkę i wstawić do środka probówki.
    Kolby z brzeczką na starter należy zakryć folią aluminiową. Folia nie może szczelnie przylegać do kolby, bo zawartość będzie mocno kipiała. Trzeba folię lekko poluzować, aby ciśnienie mogło się wyrównywać. W szybkowarze brzeczka nabierze ciemniejszego koloru, ma to związek z zachodzącymi reakcjami Maillarda. Jeżeli sterylizuje brzeczkę na starter nie zapomnij do niej wrzucić rdzenia mieszadła magnetycznego, nie martw się rdzeń to wytrzyma.
     
    Gwoli przypomnienia. Poluzowane nakrętki, folia na kolbie luźno zaciśnięta, ustawiasz maksymalne ciśnienie, jak zaczyna mocno parować czekasz 15-18 minut, szybkowar musi się sam otworzyć.
     
    Mieszadło magnetyczne
    Mieszadło magnetyczne bardzo przyśpiesza namnażanie drożdży. Mieszadło magnetyczne możesz zrobić sam z wentylatora (w mieszadle potrzebujesz obrotów nie większych jak 1800 obr/min, zwróć na to uwagę dobierając wentylator) . Lub kupić od naszych przyjaciół z dalekiego wschodu (koszt ~100 zł wraz z teflonową pastylką, niestety około dwóch miesięcy czekania). Nie kombinuj z mieszadełkiem (rdzeniem, pastylką) własnej roboty. Po prostu je kup. Uniwersalny wymiar mieszadełka to 30 mm x 8 mm, dobrze się sprawuje w małych jak i dużych kolbach. Musi być w teflonowej osłonce, wytrzyma wtedy warunki panujące w szybkowarze. Przeniesienie napędu odbywa się na zasadzie sił pola magnetycznego. Mieszadełko podąża za rotującym polem magnetycznym tym samym wytwarza wir w kolbie. Pod płytą mieszadła najczęściej jest obracający się magnes trwały (drogie modele mają układ cewek). Proste i skutecznie. Lekki wir w naczyniu pozwala rozprowadzać tlen. Również pozwoli wypycha gromadzący się dwutlenek węgla i pobiera nowe dawki powietrza. Same plusy. Drożdże na mieszadle namnażają się o wiele szybciej (wg literatury nawet do 4 razy szybciej jak w klasycznym starterze z potrząsaniem). 
     
    Tak wygląda mieszadło w akcji:

    Jak chcesz zobaczyć jak wygląda po rozebraniu zajrzyj tutaj: 
     
    Kolba Erlenmeyera
    Będziesz potrzebował przynajmniej dwóch kolb. Pierwsza o pojemności 250 ml, druga większa 2 litrowa. Możesz je zastąpić wysokimi szklanymi naczyniami lub butelkami. Muszą mieć płaskie dno, aby mieszadełko nie spadało. 
     
    Uwaga: Jeżeli myślisz o piwach dolnej fermentacji lub starterach do mocnych piw górnej fermentacji, to kup kolbę 3 litrową zamiast 2 litrowej.


     
    Profil naczynia sprzyja lepszej dystrybucji gazu (powietrza i zawartego w nim tlenu) oraz wir z mieszadła jest stabilniejszy. Przewężenie na górze zmniejsza też prawdopodobieństwo zassania mikrobów do środka w trakcie pracy mieszadła (tak wyczytałem).
     
    Zakup małej kolby to wydatek kilku złotych. Duża kolba kosztuje około 50 zł z kosztami przesyłki. Jak masz miejsce to kolba 3 litrowa będzie lepsza (będziesz mógł zaszczepiać mocne piwa bez robienia cienkusza, tak to działa, wiele razy sprawdzałem).
     
    Kolby są wykonywane ze szkła borokrzemowego lub Pyrex (mogę się mylić, ale na jedno wychodzi z naszego punktu widzenia). Takie szkło wytrzyma warunki panujące w szybkowarze. Co więcej w tych kolbach możesz gotować na gazie. Jakby tego było mało z gazu możesz przenieść od razu do kąpieli wodnej i kolba nadal to wytrzyma.
     
    Procedura startera w domowym laboratorium
    Minimum na godzinę przed użyciem drożdży wyciągnij je z banku w celu ogrzania do temperatury pokojowej. Tyle czasu zajmie Ci sterylizacja w szybkowarze i studzenie brzeczki. Używając mieszadła możesz śmiało używać probówek 5ml (1ml gęstwy).
    Do kolby wlewasz 150 ml brzeczki o ekstrakcie 5-8°P, dodajesz pożywkę zgodnie z zaleceniami producenta i wrzucasz mieszadełko (rdzeń/pastylkę)
    Zakrywasz kolbę podwójną warstwą folii aluminiowej. Początkowo mocno ją zaciskasz na kolbie, aby wyprofilować kształt a potem luzujesz zamknięcie. Zapewni to regulację ciśnienia.
    Wstawiasz kolbę do szybkowara szybkowarze (dygresja, warto w międzyczasie przygotować fiolki z solą i skorzystać z tego samego czasu pracy szybkowara. Tak wysterylizowane fiolki mogą stać i czekać na użycie w późniejszym terminie).
    Gotuj w szybkowarze 15-18 minut. Czas liczysz od momentu, aż para będzie bardzo mocna. Wody dodajesz minimalnie tyle ile zaleca producent. Używaj wody destylowanej, nie będzie zacieków.
    Poczekaj, aż szybkowar się otworzy. Jeżeli były tam fiolki to wyciągaj je po sztuce i dokręcaj. Będą gorące. Samą kolbę wyjmij na koniec rękawicą (silikonowa zapewnia porządny chwyt). Dociśnij folię na szyjce.
    Wstaw kolbę do kąpieli wodnej. Temperatura brzeczki musi spać do około 25°C. Nie używaj termometru, aby nie ryzykować infekcji. Ma być delikatnie chłodna. Jak masz pirometr to go użyj.
    Zdejmij taśmę z probówki z drożdżami. Zdezynfekuj probówkę oraz górę kolby. Również otoczenie kolby. Jeżeli masz to załóż rękawiczki i zdezynfekuj ręce. Proces też warto wykonać w otoczeniu lampy spirytusowej.
    Wstrzymaj oddech lub załóż maseczkę. Wytrząchaj porządnie fiolkę z drożdżami i delikatnie poluzuj nakrętkę. Jedną ręką podnieś folię na kolbie i zdejmij nakrętkę z drożdży. Przelej drożdże.
    Zakryj kolbę folią aluminiową, ale nie zaciskaj jej mocno. Musi być przepływ powietrza. Kolbę postaw na mieszadło. Ustaw obroty takie, aby wir sięgał do ¼ wysokości.
    Po 24 godzinach można przelać stater do większej kolby z 1,2-1,4 l brzeczki o ekstrakcie około 10°P. Jeżeli nie gotujesz na gazie, to wykonujesz z wariantu z minimum sprzętu od kroku 17. Jeżeli gotujesz na gazie. Stawiasz kolbę na gaz i brzeczkę gotujesz 10-20 minut w kolbie. Dla kolby nic nie będzie, do tego została stworzona. Kolba powinna być zakryta folią aluminiową. Uważaj, aby nie wykipiała.
    Po odłączeniu źródła ciepła kąpiel wodna i chłodzenie do 25°C.
    Zdejmujesz małą kolbę z mieszadła i dezynfekujesz górę obu naczyń (pryskasz po folii i pod nią).
    Na bezdechu przelewasz zawartość małej kolby do dużej wraz z mieszadełkiem.
    Stawiasz dużą kolbę na mieszadle. Po 24 godzinach masz gotowy starter dla brzeczki 20-25l.
     
    Na poniższym filmie krótka instrukcja jak zaszczepić starter pierwszego stopnia. Starter był wysterylizowany w szybkowarze. Pojemność około 200 ml, ekstrakt 7°P.
     
     
    Inne możliwości przygotowania startera w dużej kolbie:
    Kolba dwulitrowa jest za wysoka i nie zmieści się do szybkowara. Zamiast chemicznej dezynfekcji możesz użyć sterylizacji w piekarniku. Myjesz kolbę i dokładnie ją suszysz. Następnie zakrywasz bardzo szczelnie wlot dwiema warstwami folii aluminiowej. Wstawiasz do piekarnika. Pieczesz godzinę w temperaturze 180°C (domowa sterylizacja na sucho). Brzeczkę do dużej kolby możesz przygotować w szybkowarze w mniejszych kolbach/naczyniach. Następnie ją przelać do dużej kolby.
     
    Bonus pierwszy, metoda soli fizjologicznej z użyciem sterylizacji w szybkowarze.
    Przygotowujesz roztwór soli 9g soli (najlepiej niejodowanej) i 1 litr wody demineralizowanej. Dokładnie mieszasz. Dokładniejsza instrukcja jest w pierwszej części poradnika.
    Przygotowujesz probówki niesterylne, autoklawowalne. Przykładowo o pojemności 5 ml typu falcon.
    Strzykawką do każdej probówki wlewasz 4 ml roztworu soli fizjologicznej.
    Probówki wkładasz do szklanki w pozycji pionowej. Jeżeli jest ich za mało i się przewracają użyj folii aluminiowej, aby zrobić im stojak. Poluzuj nakrętki.
    Wstaw do szybkowara na 15-18 minut na maksymalnym ciśnieniu. Czas licz od momentu mocnej pary.
    Czekaj aż szybkowar się sam otworzy i dokręć probówki.
    Reszta instrukcji tak samo jak w części pierwszej. Masz już probówki jałowe wraz z solą, pomiń punkty o napełnianiu solą z ampułek.
     
    Bonus drugi, składowanie z użyciem parafiny.
    Sterylizacja otworzyła drogę do kolejnych metod. Metoda składowania w parafinie wydłuża czas przydatności drożdży o kilka tygodni w porównaniu do soli fizjologicznej. Zasada jest niemal identyczna, jedyna różnica jest taka, że sól fizjologiczną zastępujesz olejem parafinowym. Oczywiście probówki z parafiną sterylizujesz. Parafina ma ten plus, że słabo rozpuszcza się w niej powietrze, drożdże wolniej pracują i zmniejsza się ryzyko mutacji.
     
    Własna sterylizacja w perspektywie czasu  jest tańsza jak zakup sprzętu jałowego. Po jakimś czasie zamortyzuje nawet koszt szybkowara. Jeżeli masz garnek ciśnieniowy, to już nie wrócisz do jałowych probówek.
     
    FAQ - najczęściej zadawane pytania.
    Czy przelewać całą zawartość kolby, czy tylko same drożdże, jak tylko same drożdże to jak zebrać je z dna? Przelewam najczęściej całą kolbę (ale bez pastylki). Drożdże podczas fermentacji zjedzą produkty uboczne, które powstały w trakcie namnażania w staterze. Pamiętaj, że starter miał około 10°P i wpłynie na ekstrakt końcowy brzeczki (najczęściej rozcieńczy ją) - uwzględnij to przy warzeniu i zapiskach.  Jeżeli chcesz przelać tylko same drożdże, to musisz poczekać aż się ułożą. Wstaw już namnożony starter do lodówki na dzień przed warzeniem (drożdże pyliste nawet na dwa dni). Na 3-4 godziny przed końcem warzenia wyjmujesz je z lodówki, aby nabrały temperatury pokojowej. Przed zaszczepieniem wylej pożywkę z nad drożdży, ale nie całą, musi jest trochę zostać. Mieszasz kolbą i przelewasz do fermentora (bez pastylki). Drożdże pyliste będą wyzwaniem. Ta metoda również niepotrzebnie stresuje drożdże. Z subiektywnego punktu widzenia, przelanie całego startera jest wygodniejsze. Jaki wymiar mieszadełka/rdzenia/pastylki? Używam dwóch mieszadełek zamiennie 25 mm x 7 mm oraz 30 mm x 8 mm. Oba wymiary świetnie się sprawują nawet w dużej kolbie. Miałem większe mieszadełko 40 mm x 8 mm, było za duże i spadało na mieszadle z wiatraczka. Jeżeli konstruujesz własne mieszadło, to najlepiej użyj wiatraka o obrotach 1800 - 2000 obr/min. Nie przylepiaj magnesów bezpośrednio na wiatrak, bo zakłócają pracę silnika. Zdystansuj je na 1-2 cm i zobaczysz poprawę pracy i większy niutonometr. Jako magnesów w moim mieszadle użyłem dwóch neodymowych o wymiarze 20 mm x 3 mm. A jako dystansu użyłem oprawek kolimatorów dla power-led (1 zł za sztukę). Magnesy idealnie wchodzą w oprawkę a same plastikowe oprawki łatwiej przykleić jak magnes. Mieszadło na bazie wiatraka trudno się centruje (sam wiatrak ma spore luzy). Aby zmniejszyć wibracje warto wiatrak przykleić na podkładkach z elastycznej pianki/gumy.  
    Do zobaczenia w kolejnym poradniku. Jako, że mam sporo pytań na temat mrożenia to najpierw będzie właśnie o tym. Następnie techniki agarowe. Mam nadzieję, że się podobało. Jeżeli pewne tematy są mało jasne to śmiało zadawaj pytania w wiadomościach prywatnych (lub na forumowym chacie). Pytania i odpowiedzi będę zamieszał na bieżąco w FAQ.
     
    Jeszcze raz dziękuję forumowiczom: BretBeermann, B.K., czeburaszka710, Dr2, Maciejeq, Matros, Mrzon,  Pan Łyżwa,  Undeath,  Wajcha.
     
    Nauczyłeś się sterylizacji, możesz zapoznać się z kolejną metodą w częśći trzeciej poradnika opisałem mrożenie,  które pozwala przechowywać drożdże nawet do roku czasu. Również może Cię interesować część czwarta poradnika gdzie opisuję skosy oraz filtracja na szalkach Petriego.
     
  17. Super!
    DanielN otrzymał(a) reputację od eneash w Bank drożdży piwowarskich w domowych warunkach 1/4 - sól fizjologiczna   
    Bank drożdży piwowarskich w domowych warunkach 1/4 - sól fizjologiczna
     
    Uwaga! Poniższy artykuł ma nowszą rewizję. Uprościłem metodę oraz dostosowałem ją do realiów sprzętu dostępnego na naszym rynku. Metoda jest również bezpieczniejsza. Nowy poradnik dostępny jest tutaj.
     
    Własny bank drożdży pozwoli Ci znacznie zredukować koszt użycia drożdży płynnych. Również zobaczysz, że te drożdże wcale nie są takie straszne i trudne. Zatem jeśli  masz 20 minut wolnego czasu to zapraszam do lektury, mniej więcej tyle zajmie Ci przeczytanie tego poradnika.
     
    Co to właściwie jest bank drożdży? Obrazowo mówiąc są to czyste próbki drożdży, które możesz w każdej chwili rozpropagować lub inaczej rozmnożyć. Następnie użyć zupełnie tak samo jak drożdże płynne ze sklepu. W domowym banku w depozycie trzyma się kilka ulubionych lub rzadkich szczepów. Dodam jeszcze, że bank drożdży piwowarskich to przejście na drożdże płynne. Jednak nie rezygnuj z suchych. Zawsze trzymaj paczkę 'sucharów', tak na wszelki wypadek.
     
    Poradnik opiera się w dużej mierze na dwóch książkach Yeast, The practical Guide to Beer Fermentation oraz Brewing Engineering. Posługiwałem się też dokumentami i stronami znalezionymi w Internecie. Pełna lista będzie zamieszona w bibliografii w ostatniej części poradnika. Suche instrukcje z książki wzbogacam o własne doświadczenia i spostrzeżenia. Również nie mogę zapomnieć o wymianie doświadczeń na komunikatorze forum.
     
    Bank drożdży oznacza przechowywanie próbek w minimalnych ilościach, które później trzeba rozpropagować. Dla metody mrożenia czy też agaru będą to wręcz mikrolity.  Niektóre z opisywanych metod będą potrzebowały kilku dni, aby namnożyć drożdże do ilości potrzebnej na warkę. Metody wprowadzam w kolejności ekonomicznej, tak aby nie wydawać na starcie dużych pieniędzy.
     
    Jak przechowywać drożdże w domu?
    Mamy kilka możliwość. Większość z nas przechowuje gęstwę do ponownego użycia. W bardzo prosty sposób możemy przedłużyć czas jej przydatności płukając najlepiej w kwaśnym środowisku. Następnie przenieść czystą gęstwę do roztworu soli fizjologicznej. Tak przygotowane drożdże mogą stać kilka miesięcy w lodówce. Literatura podaje okres kilku lat, jednak podchodził bym do tego sceptycznie. Inną techniką bardziej zaawansowaną i chyba najczęściej wybieraną są podłoża agarowe. Agar jest to substancja żelująca, która z pożywką (najczęściej mini brzeczką) tworzy galaretowate podłoże. Na odpowiednio przygotowanym podłożu drożdże mogą żyć miesiącami w lodówce. Podłoża agarowe są bazą dla przechowywania drożdży na szalkach Petriego lub innych naczyniach. Drożdże przechowywane w probówce na podłożu agarowym to skos. Osobiście moją ulubioną techniką jest mrożenie drożdży.
     
    Zanim przejdę do metody. Dyskutowałem z kilkoma osobami na temat kształtu poradnika, od której metody zacząć, jaki sprzęt wybrać. Przyznam, że chciałem zacząć od mrożenia, włącznie ze sterylizacją w warunkach domowych. Ale mądrzy i bardziej doświadczeni ludzie z tego forum wybili mi to z głowy, za co dziękuję. Matros przekonał mnie, aby metodę soli fizjologicznej opisać jako pierwszą. Pozostali podsunęli mi pomysł jałowego sprzętu, aby nie komplikować na starcie ze sterylizacją. Osoby które były zamieszane w powstawanie i kształt tego poradnika to: Matros, czeburaszka710, Dr2, Pan Łyżwa, Maciejeq, BretBeermann. Serdecznie dziękuję. Poradnik, tak jak w szkole, przedstawia jedną konkretną drogę na konkretnym sprzęcie. Od Ciebie zależy jak go potem użyjesz/zmienisz/ulepszysz. Myślę, że stanowi wypadkową wygoda/jakość/cena. Miłej lektury.
     
    Przechowywanie w roztworze soli fizjologicznej
    Poniższy poradnik jest mocno podparty stroną Yeast banking – #3 Isotonic sodium chloride oraz Yeast: The Practical Guide to Beer Fermentation. Techniki używa Matros i jest recenzentem tego poradnika. 
     
    Czego będziesz potrzebował:
    Czystego źródła drożdży. Powiedzmy, że będzie to płukana gęstwa drożdżowa. Bardzo ważne jest, aby przemywać drożdże przegotowaną i ostudzoną wodą. W takiej wodzie jest mało rozpuszczonego tlenu, co nie pobudza nadmiernie drożdży.
    Roztworu soli 0,9% fizjologicznej, do kupienia w każdej aptece w postaci 5ml ampułek. Sól fizjologiczną można tanio zrobić samemu. Na końcu poradnika masz opisane jak to zrobić.
    Sterylna strzykawka 5ml i sterylna igła. Igła musi być jak najdłuższa i najgrubsza. Najczęściej używam 1,6x40.
    Probówki lub pojemniki do przechowywania (od 5 do 30 ml). Większe zabierają więcej miejsca i zużywają więcej soli fizjologicznej. Ekonomiczniej wychodzą mniejsze pojemności 5 - 15 ml. Na starcie polecam 15 ml a docelowo 5 ml.
    Rękawiczki nitrylowe lub lateksowe. Kup o jeden rozmiar za małe. Trochę ciężej założyć, ale super przylegają do ręki i wygodniej się operuje.
    Środek dezynfekujący z atomizerem (StarSan, Desprey, Mexipol, spirytus medyczny 70%).
    Taśma winylowa (lepiej ale drożej) lub izolacyjna PVC (używam i póki co jest dobrze). Jako dygresja. W laboratoriach do zabezpieczania szalek czy też zakrętek używa się parafilmu.
    Maseczka chirurgiczna, nie jest konieczna ale bardzo ułatwia pracę. Bez maseczki będziesz musiał pracować na bezdechu aby zminimalizować ryzyko zakażenia.
    Lampa/Palnik spirytusowy na knot. Palnik również można pominąć, jednak ryzyko kontaminacji będzie większe. Knot trzeba podpalić, do tego celu najlepsza jest zapalniczka piezoelektryczna. Te oparte o rolkę i krzesiwo czasem niszczą rękawiczki przy zapalaniu. Palnik łatwo wykonać samemu. Źródło paliwa może stanowić alkoholowy środek dezynfekujący, spirytus medyczny czy też bioetanol. Używam bioetanolu.
     
    Zanim przejdziesz do procedury kilka słów o sterylności. Materiał biologiczny jakim są drożdże będzie przechowywany długie miesiące i wymaga zachowania sterylnych warunków. Inaczej próbkę możesz zakazić obcym materiałem (bakterie, dzikie drożdże) i całe starania pójdą na marne. Dlatego na starcie polecam kupić gotową sól fizjologiczną w aptece, która jest już jałowa, oraz sterylne zakręcane probówki pakowane pojedynczo. Najlepiej kupować od razu w paczkach po 10-25 sztuk, wtedy cena jednostkowa wychodzi w granicach 1-2 zł. W dalszej części poradnika zakładam, że wszystko co kupiłeś jest sterylne. O sterylizacji w warunkach domowych możesz przeczytać w drugiej części poradnika.
     
    Procedura
    Przygotuj środowisko pracy. Pomieszczenie w którym pracujesz powinno być przewietrzone, czyste i wolne od przeciągów. W sezonie grzewczym warto zakręcić grzejniki na godzinę przed procedurą. Wyeliminuje to prądy powietrzne z którymi dryfują mikroby. Poproś domowników, aby kilka minut Ci nie przeszkadzali. Zamknij psa/kota/papugę w sąsiednim pokoju. Blat stołu musi być dokładnie umyty i suchy. Rozypl na jego powierzchni środek dezynfekujący, czekaj tyle ile zaleca producent. Jeżeli jest oparty na alkoholu to wyparuje szybko. Jeżeli użyłeś StarSanu to po 5 minutach wytrzyj stół suchym ręcznikiem.

     
    Zdezynfekuj ampułki soli fizjologicznej. Fiolek potrzebujesz tyle aby napełnić sterylne probówki. Prosta matematyka, probówkę 10 ml napełnisz dwoma 5 ml ampułkami soli. W poradniku używam probówki 5 ml, to ta z niebieską zakrętką. Mimo tego, że nie jest w opakowaniu to jest sterylna wewnątrz. Najczęściej sterylne probówki wykonane są z plastiku PE i opakowane folię.
    Wyłóż potrzebny sprzęt, ale nie zdejmuj opakowań. Strzykawkę, igłę, palnik, rękawiczki, maseczkę, probówkę, zdezynfekowane ampułki soli, zapalniczkę.

     
    Wystaw z lodówki źródło drożdży. Drożdże powinny opaść i zgromadzić się na dnie pojemnika. Zdezynfekuj też zewnętrzną część pojemnika z drożdżami. Na potrzeby zdjęć przygotowałem mały starter ~25 ml ~6°P w sterylnym pojemniku 60 ml. W dolnym prawym rogu widać zbijające się drożdże.


    Załóż rękawiczki i zdezynfekuj dłonie. Alkohol musi odparować. Nie chcesz się podpalić.
    Upewnij się, że cały sprzęt, jeżeli używałeś środka opartego na alkoholu, jest suchy. Za chwilę będziesz zapalał lampę.
    Usiądź wygodnie, łokcie oparte na blacie. Nałóż maseczkę. Jak jej nie masz to nie oddychaj w stronę lampy/sprzętu. Jeżeli płomień nie drga to robisz to dobrze.
    Zapal lampę spirytusową. Od tej pory nie używasz środka dezynfekującego opartego o alkohol (chyba nie muszę tłumaczyć czemu). Lampa spirytusowa powinna mieć równy płomień wysoki na kilka centymetrów. Teraz wszystkie ruchy, które będziesz wykonywał muszą być powolne i blisko płomienia. Jest to strefa bezpieczna, lampa czyści otoczenie. Gorące powietrze nie pozwala mikroorganizmom opaść. Szybkie ruchy powodują wiry powietrzne i mikroby mogą wpaść do probówki.

    Wyciągasz w otoczeniu lampy sprzęt jednorazowy. Załóż igłę na strzykawkę ale nie zdejmuj jeszcze osłonki.
    Otwórz pojemnik z drożdżami blisko płomienia. Zdejmij z igły osłonkę i powoli tłoczkiem pobierz gęstwę.  Zasada jest taka, że potrzebujesz 1 ml na każde 5 ml pojemności probówki, resztę dopełniasz solą fizjologiczną. Zatem jeżeli masz 2 probówki po 10 ml, to potrzebujesz 4 ml gęstwy i 8 ml soli fizjologicznej. Dla jednej probówki 5 ml potrzebujesz 1 ml gęstwy i 4 ml roztworu soli fizjologicznej. Pojemnik z drożdżami musi być na tyle niski aby pozwolił Ci to swobodnie operować strzykawką i igłą na jego dnie. Przy silnie flokulujących (zbijających się) szczepach może to być trochę trudniejsze. Dlatego tak ważna jest gruba igła.
    Strzykawkę z igłą kładziesz w otoczeniu lampy.
    Jeżeli zamierzasz korzystać jeszcze ze źródła drożdży to je zakryj.
    Odkręć sterylną fiolkę. Korek kładziesz blisko lampy gwintem do góry.
    Do probówki (zakładam, że masz probówkę 5 ml) wlewasz 4 ml soli fizjologicznej.

    Weź strzykawkę z drożdżami, końcówkę igły opal nad płomieniem. Syknie i zmieni kolor, bez strachu. Ma to na celu zabicie wszystkiego, co mogło się znaleźć na igle.
    Wstrzyknij około 1 ml gęstwy ze strzykawki do fiolki z solą. Przypominam zasadę na 5 ml pojemności probówki 1 ml gęstwy dopełniasz 4 ml roztworu soli fizjologicznej.

     
    Odłóż strzykawkę w pobliżu lampy i zakręć probówkę. Powtórz od punku 12 dla kolejnej probówki. Z praktyki wiem, że nie opłaca się robić więcej jak 3 fiolki na szczep. Miejsce w lodówce szybko się kończy. Tym szybciej im więcej szczepów chcesz przechowywać (tych też nie opłaca się mieć zbyt wiele). Również jak nie warzysz dużo, to ich nie zużyjesz a to się przekłada na większe koszta.

    Zgaś lampę spirytusową.
    Zakręcone fiolki zdezynfekuj i poczekaj aż wyschną lub osusz ręcznikiem papierowym po czasie jaki zaleca producent środka dezynfekującego.
    Zakrętkę fiolki zabezpieczasz taśmą izolacyjną.
    Zapisz na fiolce datę, oraz nazwę szczepu.
    Odstaw do pudełka styropianowego, pudełko wstaw do lodówki. Zabezpiecz fiolki tak, aby stały w pozycji pionowej. Drożdże po kilku godzinach w lodówce ułożą się na dnie.

     
    Jeżeli nie masz lampy spirytusowej, to kroki wykonujesz tak samo. Powoli w małym obszarze i bez nerwów. Metoda jest stosunkowo bezpieczna, niesie małe ryzyko kontaminacji.
    Jeszcze raz zaznaczę, że drożdże w lodówce musisz przechowywać pionowo, najlepiej w pudełku styropianowym z dodatkowym wkładem chłodzącym wewnątrz pudełka. Może to być mały słoik z wodą, lub wkład do lodówki turystycznej. Wkład zwiększa bezwładność temperaturową i otwarcie lodówki nie powoduje znaczących wahań temperatury w pudełku. Drożdże będą dłużej zdatne do użycia.
     
    Jak rozpropagować drożdże z banku do takiej ilości aby zaszczepić brzeczkę?
    Miałem sporo pytań na ten temat. Dlatego zdecydowałem się na zrobienie drugiej części poradnika, gdzie opisuję dwa podejścia do propagacji startera. Pierwsza metoda z użyciem narzędzi dostępnych w kuchni. Druga metoda, bardziej efektywna z użyciem narzędzi spotykanych w laboratorium. Zatem kliknij tutaj i miłej lektury.
     
    Przygotowanie roztworu soli fizjologicznej ~0.9%.
    Potrzebujesz w miarę precyzyjnej wagi. Soli kuchennej (najlepiej niejodowanej). Oraz wody demineralizowanej lub destylowanej.
    Instrukcja jest prosta. Odważasz 9g soli i wsypujesz do 1l wody. Gotujesz minimum 10 minut  pod przykryciem. Pozbędziesz się tlenu i spasteryzujesz roztwór. Przelewasz roztwór do zdezynfekowanego zakręcanego szklanego naczynia. Stężenie roztworu około 0.9% ma ciśnienie osmotyczne podobne jak drożdże.
     
    Zalety metody:
    Jest prosta i tania. Potrzeba mało sprzętu i można w większość zaopatrzyć się w aptece.
    Mała szansa infekcji w trakcie procesu, zwłaszcza w otoczeniu lampy.
    Podobno czas przydatności takich drożdży to nawet 2 lata, chociaż literatura najczęściej podaje okres kilku miesięcy. Szczepy pszeniczne nie lubią długiego leżakowania. Mają większą skłonność do mutacji i piwo zrobione na starych drożdżach pszenicznych może, ale nie musi, odbiegać jakością od świeżych.
    Szybkość w porównaniu do metod z podłożem agarowym czy też mrożenia.
    Jeżeli miejsce nie jest problemem to można składować w dużych pojemnikach. Wtedy wystarczy starter jednostopniowy.
    Jest świetna na początek, aby zaznajomić się z podstawami wykorzystywanymi przy bardziej zaawansowanych metodach.
    Przy zakupie sprzętu już sterylnego nie potrzebujesz dodatkowych inwestycji w sprzęt do sterylizacji.
    Super do wymiany drożdży między piwowarami - taka próbka wytrzyma kilka dni poza lodówka w cieplejsze dni, lub kilkanaście jeżeli jest chłodniej.
     
    Wady metody:
    Wszystko zależy od źródła drożdży. Jeżeli jest w nich infekcja, to nic nie pomoże (trochę przesadzam, są i na to sposoby). Musisz być pewien źródła. Dedykowany starter z paczki minimalizuje ryzyko.
    Źródło drożdży musi być duże w porównaniu do metod agarowych, gdzie wymagane jest kilka mikrolitrów, a wręcz komórek.
    Przy kilku szczepach, po kilka próbek szybko kończy się miejsce w lodówce.
    Z praktyki, szczepy bardzo mocno flokulujące trudno nabrać do strzykawki, gruba igła to podstawa, przy niskim pojemniku można nabrać od razu strzykawką. Jeżeli zakup pipet (1zł sztuka) i pompki (jednorazowo ~30 zł) nie stanowi problemu, to tą wadę można pominąć.
    Jak wszystkie metody lodówkowe nie eliminuje ryzyka mutacji. Nie trzymałem w ten sposób drożdży dłużej jak kilka miesięcy.
     
    Uwaga! Drożdże w źródle powinny być dobrze odżywione. Zatem nie jest najlepszym pomysłem dzielenie drożdży prosto z paczki od producenta. Powinieneś zrobić starter. Wtedy komórki drożdżowe mają szanse odbudować zapas glikogenu oraz makro i mikroelementów. Płukana gęstwa jest bardzo dobrym źródłem. Źródło drożdży przed podziałem wstaw do lodówki, aby osiadły na dnie. W chłodnych warunkach w komórkach drożdżowych zajdzie cała gama procesów fizykochemicznych przygotowujących je na długą zimę. Pamiętaj też, że lodówka jest miejsce pełnym bakterii, więc źródło drożdży musi być dobrze chronione przed dostępem powietrza, a przed użyciem porządnie zdezynfekowane.
     
    Stół na którym pracujesz powinien mieć twardą równą nawierzchnię. Jeżeli twój blat jest porowaty lub zniszczony, to w zakamarkach masz sporo drobnoustrojów. Warto wtedy rozważyć zakup maty silikonowej (najtaniej wychodzi mata do wyrabiania ciasta). Kładziesz matę na stole, dezynfekujesz i na niej przeprowadzasz prace.
     
    Do dłuższego składowania zalecałbym fiolki szklane. Nie przepuszczają w zasadzie powietrza (nieistotna wymiana z naszego punktu widzenia zachodzi przez korek). I jeżeli rozważasz samodzielną sterylizację szybko się zwrócą. Minusem jest to, że są droższe i trudno zakupić małe pojemności z zakręcanym korkiem. Najczęściej mają zatyczkę. Z czasem dwutlenek węgla gromadzący się wewnątrz potrafi wypchnąć korek.
     
    Orientacyjny koszt
    Liczyłem bez kosztów dostawy ale za to z opcjonalnym sprzętem. Wiele rzeczy można kupić w jednym sklepie internetowym lub na popularnym serwisie aukcyjnym od jednego sprzedawcy.
     
    Strzykawka z igłą około 0.5 zł  (apteka).
    Sterylne fiolki około 2 zł/szt. Przy zakupie całej paczki cena za sztukę spada. Różnie są pakowane od kilku do kilkuset w paczce.
    Sól fizjologiczna około 12 zł za 50 ampułek w aptece. Przygotowanie własnej jest tańsze - 3 zł za 5 litrów wody demineralizowanej oraz około 2 zł kg soli niejodowanej.
    Rękawiczki nitrylowe w aptece 1 zł para, w sklepach internetowych  od 11 do 16 zł za 100 sztuk.
    Środek dezynfekujący z atomizerem (Mexipol/Desprey/Spirytus medyczny 70%) od 15 do 20 zł.
    Maseczka chirurgiczna w aptece 1zł, w sklepie internetowym za opakowanie 50 sztuk około 10 zł
    Lampa spirytusowa z knotem, zakup dużej lampy to wydatek 15 - 25 zł. Możesz ją zrobić sam.
    Paliwo do lampki, bioetanol lub czysty spirytus medyczny w sklepach internetowych od 10 zł,  w dużo powierzchniowym sklepie budowlanym 17 zł.
    Taśma winylowa około 7 zł lub taśma PCV (izolacyjna) 2 zł.
     
    Jeżeli nie masz nic z powyższej listy, to łącznie wydasz około 80 zł (z kosztami dostawy pewnie 100 - 110 zł). W domowym browarze na stanie najczęściej już masz środek do dezynfekcji z atomizerem oparty na alkoholu. W narzędziach znajdziesz izolację. Realne koszty koszty spadają do 60 zł. Jeżeli liczysz się z ryzykiem i pominiesz lampę spirytusową lub zrobisz ją sam, to koszty spadną poniżej 50 zł.
     
    Jeżeli widzisz gdzieś błąd to proszę poinformuj mnie przez wiadomość prywatną, aby nie tworzyć off-topów w komentarzach. W przyczynie edycji odpowiednio to odnotuję.
     
    Pytania i odpowiedzi (FAQ)
    Co jest lepsze jako źródło drożdży do banku, płukana gęstwa drożdżowa czy dedykowany starter ze świeżej porcji drożdży? Jeżeli masz opcję pobrania w sterylnych warunkach małej próbki prosto ze startera to jest to lepsza opcja. Gęstwa po fermentacji nie jest tak dobrze odżywiona jak ta ze startera. Jest też lekko sfatygowana przez alkohol, wytrzyma pewnie trochę krócej. Gęstwę do trzymania pod solą najlepiej przepłukać (a jeszcze lepiej zrobić to w kwaśnym środowisku ~4pH). Czy mogę przechowywać w ten sposób bakterie lub blendy? Obawiam się, że nie. W tym temacie mam tylko mglistą wiedzę teoretyczną i fajnie jakby się wypowiedział, ktoś doświadczony (wiem, że mamy mikrobiologów wśród hobbystów). Bakterie to trudniejszy temat. Blendy (czy to z drożdżowo-bakteryjne, czy bakteryjne) lub też czyste szczepy bakteryjne słabo przechowują się w domowych warunkach. Wpływ na to ma wiele czynników od temperatury poprzez pożywkę skończywszy na czasie. Bakterie to domena prokariotów, drożdże eukariotów - inne ścieżki metaboliczne, zupełnie inne czasy przyrostów/podziałów. Po prostu przechowując je pod solą/olejem/skosie zmieniają się proporcje jednych szczepów do drugich. Bakterie dodatkowo szybciej mutują. To co trzymasz w warunkach domowych nie koniecznie musi pójść w tą stronę jak producent chciał. Jednym ze sposobów o którym czytałem to trzymanie bakterii jako odseparowane linie w warunkach optymalnych dla danej linii. Potem propagować (każdą linię oddzielnie), następnie zmieszać w odpowiednich proporcjach i można zaczepiać brzeczkę. Efekt będzie zależał od wiedzy/doświadczenia/szczęścia. Może mrożenie dałoby jakiś efekt, ale wątpię by był zadowalający. O co chodzi z tym stopniowaniem starterów, czemu nie mogę przelać od razu do dużego statera? Zrobiłem na ten temat drugą część poradnika, ze względu na to, że było często zadawane. Gdzie kupić probówki i jakie? Używam takich probówek. Ta druga od prawej jest sterylna o pojemności 12ml (taka pojemność pozwala już na zrobienie statera na 2 kroki, ale kosztem miejsca w lodówce). Te z niebieskimi kapslami to probówki typu Falcon - mają pojemność (odpowiednio 5ml i 15ml). Falconów kupiłem 50 sztuk i jeszcze mam zapas. Przy takiej ilości wychodzi 50gr/szt.. Falcony trzeba najpierw wysterylizować. Metody sterylizacji w warunkach domowych znajdziesz tutaj. Te szklane są wielorazowego użytku, przed użyciem trzeba je umyć, wysuszyć i wysterylizować. Probówki i resztę sprzętu kupuję je na popularnych serwisach aukcyjnych, tablicach ogłoszeń lub sklepach internetowych. Wyszukuję jednej z kombinacji: probówka, jałowa, sterylna, falcon, 5ml, 12ml, 15ml, szklana, zakręcana). Często sprzedawca na serwisie aukcyjnym ma wszystko mówiący nick. W takim przypadku idę do jego sklepu, bo jest często taniej. Może jak będzie duże zainteresowanie tym tematem to takie zestawy 'małego laboranta' wprowadzą sklepy dla piwowarów (pomarzyć ludzka rzecz :), ale jakby coś to służę poradą. Mała uwaga, unikajcie probówek z wciskanym korkiem, nie będą zdawały egzaminu. Drożdże nawet w lodówce powoli pracują i tworzy się lekkie ciśnienie. Te ciśnienie czasem jest na tyle duże, że wypcha korek. Czy pojemniki/probówki mogą być niejałowe (niesterylne), może wystarczy, że użyję środka dezynfekującego? Pojemniki muszą być jałowe, inaczej ryzyko zakażenia bardzo wzrasta. Powołuję się tutaj na książkę "Yeast: The Practical Guide to Beer Fermentation". Zawsze przed dezynfekcją jest mycie (jeżeli jeszcze nie daliście ‘dzięki’ za ten artykuł dla użytkownika Undeath, to jest to dobry czas, aby zrobić to teraz) . Proces mycia pozbywa się w sposób mechaniczny i/lub chemiczny dużej ilości brudu, mikroorganizmów oraz czyści miejsca gdzie mogą się ukryć. Jeżeli mycie jest połączone z sanityzacją, to pozbędziemy się w ten sposób 99.9% mikroorganizmów. Dezynfekcja, to proces który wybija minimalnie 99.999% mikroorganizmów. Czyli statystycznie na 1000 mikrobów 1 przeżywa. W powietrzu dookoła nas znajdują się ich dziesiątki tysięcy, w pokoju nawet miliony (mówię tylko o powietrzu). Fiolka która nie jest jałowa pewnie na ściankach ma bakterie i dzikie drożdże. Zatem jest spora szansa, że kilka z nich przeżyje. Po mocnej zimie w lodówce drożdże są osłabione. Bakterie o ile takie były mają się lepiej (bo się lepiej adaptują). Druga sprawa najczęściej bakterie mnożą się szybciej jak drożdże, od kilku (np.: lactobacillus) do kilkunastu razy szybciej. Przy małej próbce i wzroście wykładniczym znacznie wzrastają szanse niechcianych gości. Obecne środki dezynfekujące są oczywiście lepsze jak minimum zakładane dla dezynfekcji i ryzyko jest mniejsze, ale tutaj nasuwa się pytanie. Czy dla 1-2 zł różnicy chcemy ryzykować zainfekowanym piwem?
    Czy możesz nagrać film oprócz zdjęć? Nawet nie wyobrażacie sobie ile mnie to kosztowało pracy i czasu. Filmowanie i montaż to bardzo trudna sprawa. Zrobiłem co mogłem.
    Dziękuję @alert za pożyczenie statywu.
     
    Mam nadzieję, że się Wam podobało. 
     
    Możesz też być zainteresowany kolejnymi częściami:
    Druga część poradnika, nauczysz się propagacji drożdży z banku, sterylizacji w warunkach domowych oraz jeszcze raz spojrzysz na tą metodą, tym razem z wykorzystaniem sterylizacji. Część trzecia poradnika, metoda mrożenia, które pozwala przechowywać drożdże nawet do roku czasu. Część czwarta poradnika, skosy oraz filtracja na szalkach Petriego.  
  18. Super!
    DanielN otrzymał(a) reputację od tmk1 w Mieszadło Magnetyczne - zrób to sam (DIY)   
    Mieszadło magnetyczne - zrób to sam (DIY)
     
    Przeczytanie poradnika zajmie Ci około 15 minut.
     
    Nie będzie to poradnik o zrobieniu mieszadła z wentylatora. Na forum są już o tym wątki. Jak szukacie takiego rozwiązania (tanie i solidne), to zachęcam do przeszukania forum i odnalezienia użytkowników, którzy je Wam zrobią. I to w bardzo przystępnej cenie.
     
    Zanim zacznę, serdeczne dzięki Dr2 za wyjaśnienie czym jest regulacja obrotów silnika oraz recenzję tego poradnika. Jak zobaczycie uszczypliwe wpisy Dr2, to zachęcam do reagowania. Zawsze miło zobaczyć, że ktoś docenia pracę.
     
    Mieszadło magnetyczne potrzebne jest w naszym hobby do efektywnej propagacji drożdży. Mieszadło magnetyczne na wyższych obrotach porządnie natlenia starter i namnażanie jest o wiele szybsze. Na bardzo małych obrotach brettanomyces również będą wdzięczne. Jest to prawdopodobnie najbardziej przydatne narzędzie po tym jak odkryjesz świat drożdży płynnych.  
     
    Bardzo często używam małych kolb jako pierwszego lub drugiego stopienia startera. Kolby mają pojemności od 150 ml do 300 ml. W tych najmniejszych muszę mieć bardzo małe obroty. Wir powinien sięgać maksymalnie do połowy wysokości cieczy. Wentylatory z wiatraków są bardzo uciążliwe przy małych obrotach. Również nie lubią takich warunków, bo pracują blisko zwarcia. Często mi się po prostu uszkadzały. Szukałem innego rozwiązania. Kupiłem na dalekim wschodzie mieszadło Inttlab i nie powiem działa świetnie. Na waszą prośbę zajrzałem do środka i to co zobaczyłam wywołało dysonans pozakupowy (ale i tak jest dobrze, bo nie ma chyba tańszego komercyjnego rozwiązania, które po prostu działa). Dlatego kolejne mieszadło (tak jedno to za mało ) zrobiłem już bazując na nowej wiedzy.
     
    Wszystkie części i elementy możesz kupić. Nie chciałem stosować podejścia- akurat miałem to wziąłem. Startujemy z tej samej pozycji.
     
    Po rozmowie z Dr2 już wiedziałem, że lepiej użyć regulatora PWM zamiast prostej regulacji napięciowej. Po zapoznaniu się z dokumentacją techniczną profesjonalnych modeli mieszadeł wiedziałem, że trzeba celować w obroty od 150 do 1500 obr/min (rpm). Zatem dość szeroko jeżeli chodzi o rozpiętość. A jednocześnie nietypowo bo silniki najczęściej mają obroty o rząd wielkości większy. Przekładnia w domowych warunkach odpada, bez drogich narzędzi trudno będzie ją zrobić. Trzeba było to zrobić trochę inaczej, tutaj inspiracją było mieszadło Inttlab.
     
    Ceny, które podaję są zaokrąglone w górę do 50gr. Aby być szczerym, udało mi się to wszystko kupić w dwóch sklepach stacjonarnych i wizycie w dużo powierzchniowym sklepie budowlanym. W sklepach on-line prawdopodobnie będzie taniej.
     
    Czego będziesz potrzebował
     
    Zasilacza 12V, który pozwoli obciążyć się prądem przynajmniej 1A. - 8 zł.

    Gniazdo zasilania. Kup takie mocowane na nakrętkę, otwór łatwiej wywiercić - 1,5 zł. Tutaj uwaga. Występują w dwóch rozmiarach 2.1 i 2.5. Kup kompatybilne z zasilaczem. Poniżej gniazdo DC 2.5/55.

    Przetwornica Step-Down, mój model jest oparty o LM2596. Przetwornica jest układem który pozwala z bardzo małymi stratami obniżać napięcie za pomocą potencjometru. Przetwornica posłuży do permanentnego zmniejszenia napięcia, co zwolni maksymalne obroty silnika, koszt przetwornicy to 4.5 zł. Jak kupisz silnik 12V o obrotach w granicach 2000 obr/min, są niestety trudno dostępne, to możesz przetwornicę pominąć. Z drugiej strony dzięki przetwornicy możesz kupić silnik 6V - 9V i zmniejszyć napięcie do wymaganego. Zasilacze 6V i 9V są sporo droższe od tych 12V. Szybkie przypomnienie oznaczeń: IN od Input oznacza wejście, OUT to Output czyli wyjście.

    Regulator PWM. Służy do zmiany obrotów przy zachowaniu większego momentu w porównaniu do sterowania napięciowego. Koszt tego układu to około 14 zł. PWM (ang. Pulse-Width Modulation), spolszczając, oznacza modulację szerokości impulsów. Upraszczając, działanie takiego układu polega na wysyłaniu pełnego napięcia z wejścia na wyjście ale w impulsach. Potencjometr służy do określenia jak szeroki (ile czasu ma trwać) ma być impuls. Skutkiem takiej modulacji długości impulsu jest zmiana obrotów silnika.

    Obudowa uniwersalna - 8 zł. Wszystko zamontowałem w obudowie Z4A, ma wymiary 159x139x59. Jak masz miejsce do przechowywania to możesz kupić większą.
     
    Wyłącznik. Podobna uwaga jak przy gnieździe zasilającym. Kup taki montowany na nakrętkę. Otwór łatwo wywiercić. Mój model kosztował 5 zł, wyglądał tak, że musiałem go mieć. Prawda jest taka, że nada się każdy inny. Ceny zaczynają się od 1.5 zł

     
    Metr przewodu dwużyłowego - 1 zł. Nie jest to konieczne, ale warto by jedna żyła była czerwona druga czarna. Czerwoną łączymy plusy (+) a czarną (-). Minimalizujesz ryzyko pomyłki.
    Silnik. Silnik kupiłem na popularnym serwisie aukcyjnym. Szukałem modelu 1800 - 2000 obr/min, ale ty były za drogie. W końcu kupiłem trochę szybszy 2700 obr/min i maksymalnym napięciu pracy 12V. Mój model ma obudowę typu MT83. Silnik montuje się dwoma śrubkami M2. Kosztował mnie z dostawą 13.5 zł. Mała uwaga MT83 oznacza obudowę a nie konkretny model. Zwracaj uwagę na parametry.

     
    Magnesy walcowe 20mm x 3mm, dwie sztuki, polaryzacja na podstawach (na górze N na dole S) - 7 zł. Magnesy świetnie trzymają się na kleju dwuskładnikowym. Są też droższe modele z otworem wewnątrz.

    Cyna z topnikiem w fiolce, 10g w postaci 3m drutu - 2 zł

     
    Dodatkowe zakupy w sklepie budowlanym
    Paczka śrubek z nakrętkami 25 sztuk 2mm x 8mm (2 śrubki do mocowania silnika musiałem skrócić, bo były za długie) - 3 zł. Małe silniki prawie zawsze są montowane na śrubki 2 mm. Zwróć na to uwagę przy zakupie silnika. Jak będą inne to kup takie by pasowały.
    Profil/kątownik PVC 15mm x 15mm x 1000mm, zapłaciłem prawie 4 zł. Przy odrobinie wprawy można go ciąć nożyczkami.

    Śruby 5mm x 60mm, 4 sztuki. Długość śrub powinna być nieznacznie mniejsza jak wysokość pudełka, wtedy nawet ciężka kolba zaprze się na nich nie dotykając górą obudowy do wirujących magnesów. Dodatkowo 12 nakrętek, 20 podkładek. Wszystko to było na wagę i zapłaciłem około 1 zł.
    Klej dwuskładnikowy. Wziąłem ten najtańszy. Klej dwuskładnikowy ma kilkanaście minut wiązania i jesteś w stanie przesuwać magnesy zanim zwiąże maksymalnie w celu ich wycentrowania - 3 zł.

     
    Sumując, łącznie wychodzi około 70 zł. Pamiętaj, że zaokrągliłem ceny w górę do 50 gr i kupowałam w sklepach stacjonarnych. Jeżeli znajdziesz sklep on-line, gdzie podobny koszyk wyjdzie taniej proszę daj znać w wiadomości prywatnej.
     
    Zauważ też, że nie uwzględniłem w kosztorysie mieszadełka. Niestety w polskiej dystrybucji te są po prostu drogie. Swoje kupiłem w Chinach, za 2 sztuki zapłaciłem z kosztami przesyłki w granicach 10 zł (jak sprawdzałem online, w Polsce cena za sztukę jest prawie dwukrotna). Więcej o mieszadełku możesz poczytać w części drugiej poradnika poświęconego starterom. Jak wiesz gdzie w rozsądnej cenie w Polsce kupić, to proszę odezwij się w wiadomości prywatnej.
     
    Narzędzia (zakładam, że masz albo możesz pożyczyć).
    Lutownica
    Wiertarka/wkrętarka oraz wiertła 2 mm, 5 mm, 8 mm (na gniazdo zasilania, włącznik, potencjometr od PWM).
    Szczypce uniwersalne, ale wolę mówić kombinerki.
    Nóż z ostrym czubkiem (będzie służył jako punktak i gratownik po wierceniu)
    Piłka do metalu (szybko i łatwo tnie profil, potrzebna też była do skrócenia 2 śrubek, możesz używać też nożyczek)
    LInijka i ołówek (do odmierzania dystansów i znaczenia).

     
    Zasada działania układu i jak to połączyć
     
    Na linii zasilania zamontuj włącznik. Do gniazda zasilania podłącz przetwornicę Step-Down (czerwony przewód z gniazda zasilania do IN+, czarny do IN-). Przetwornica pozwala obniżyć napięcie dalszego układu. Silnik będzie pracował wolniej, ale nadal będzie wystarczająco ‘silny’. Wyjście przetwornicy podłącz z wejściem sterownika PWM (czerwony przewód  OUT+ z IN+ regulatora, czarny OUT- z IN -). Do wyjścia regulatora PWM podłącz silnik (czerwony przewód MOTOR/OUT+ do ‘plusa’ silnika, czarny analogicznie do minusa). I to by było na tyle.
    Warto cynować końcówki kabli. Lutowanie oraz wkręcanie przewodów w gniazda będzie łatwiejsze. Myślę że poniższy rysunek więcej mówi jak opis.

     
    Na panelach wywierć otwory pod gniazdo zasilania, potencjometr regulatora oraz wyłącznik. Rozmieść wg uznania. W swoim mieszadle gniazdo zasilania umieściłem na tylnym panelu, a wyłącznik i regulator na przednim..
     
    Trudność jaką napotkałem to to, że regulator jest montowany za pomocą otworów w płytce (na gwincie potencjometru byłoby łatwiej). Użyłem profilu/kątownika, który przymocowałem do spodu obudowy. Do kątownika dokręciłem regulator, znalazło się też miejsce na przetwornicę.

     

     
    Silnik z magnesami podwieszony jest na 4 śrubach (na każdej śrubie są 3 nakrętki i 4 podkładki. Najniższa nakrętka i dwie podkładki mocują śrubę do spodu obudowy. Profil jest zamontowany pomiędzy dwoma nakrętkami i podkładkami. To pozwala na płynną regulację wysokości silnika i w efekcie wysokości magnesów  Silnik trzyma się również na profilu, przeciętym wzdłuż kąta.

     
    Zwróć uwagę na śruby M5 - to na nich zawieszony jest silnik z magnesami. Te dwie mniejsze śrubki, jest to mocowanie wspomnianego wcześniej profilu. Do tego profilu przykręcony jest regulator i przetwornica (za pomocą śrubek M2)
     
    Najwięcej trudności sprawiło mi przymocowanie magnesów do wrzeciona silnika. Koniec końców zrobiłem to bardzo prostym sposobem. Z kątownika odciąłem dwa kawałki o szerokości magnesów (20mm). Następnie przykleiłem magnesy klejem dwuskładnikowym. Tak, że na jednym płaskowniku był magnes w polaryzacji N-S a na drugim S-N (przyciągają się, co ułatwia pracę). Obrazowo wygląda to tak na ilustracji poniżej.
     

     
    Przy mocowaniu magnesów niezwykle ważne jest ich wycentrowanie, aby zminimalizować drgania i wibracje. Wrzeciono jest między dwoma ścianami kątowników. Dwie śrubki ściskają wrzeciono. Siłę ścisku musisz dobrać z wyczuciem inaczej plastikowy profil zacznie się mocno wyginać.

     



     
    Złożenie tego mieszadła zajęło mi 5 godzin. Złożenie drugi raz, już bez popełniania błędów i główkowania co z czym, połowę tego czasu. Zatem nasuwa się refleksja. Co prawda koszt jest o jakieś 25% w porównaniu z gotowym dobrze wyskalowanym mieszadłem Inttlab. Ale czy poświęcony czas to rekompensuje. Czas zarówno pracy jak i oczekiwania na przesyłkę z Chin.
     
    Reasumując. Jeżeli nie potrzebujesz niskich obrotów to świetnie nadają się do tego mieszadła robione przez użytkowników z forum. Jak możesz wydać trochę więcej i poczekać to kup. I w końcu. Jak jesteś majsterkowiczem, to zdecydowanie warto zrobić je samemu.

     
    Powyższy układ sterujący jak najbardziej się to nadaje do sterowania wiatrakiem. Zamiast silnika podłączasz wiatrak (najlepiej niskoobrotowy taki około 2200 obr/min i jak masz to większej mocy). Tylko proszę nie klej bezpośrednio magnesu na rotor. Zaburza to mocno pracę silnika. Użyj dystansu. Świetnie do tego się nadają oprawki na kolimatory ledów. W miejsce kolimatora pasuje magnes o średnicy 20mm. Oprawka kosztuje 1zł za sztukę i wygląda tak:

     
     
    A tak wygląda mieszadło w pracy
     

    Dziękuję. W przypadku pytań jestem do dyspozycji.
  19. Dzięki!
    DanielN otrzymał(a) reputację od CERNUNNOS w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    Wpływ tlenku wodoru na piwo
    czyli o wodzie w browarze domowym, bez lania wody
     
     
    Tlenek wodoru, również zwany oksydanem, to nic innego jak woda. H2O jest to najczęściej spotykana cząsteczka wody o niezwykle ciekawych właściwościach. Jakby nie patrzeć, woda jest głównym składnikiem piwa. Mówiąc o wodzie będę miał na myśli wszystko co jest w niej rozpuszczone i zawieszone.
    Woda jest przeceniana przez początkujących adeptów piwowarstwa domowego. Jest również niedoceniana przez wielu zaawansowanych piwowarów. W literaturze spotkasz się lub spotkałeś z opinią, że pozwala robić piwa świetne pod warunkiem, że nauczyłeś się robić piwa dobre. Woda w piwowarstwie używana jest na każdym etapie produkcji. Zauważ, że myjemy cały sprzęt. Niemal zawsze używamy jej jako rozpuszczalnika środków dezynfekujących. Dzięki doskonałym właściwościom cieplnym jest niezastąpiona podczas chłodzenia oraz podgrzewania. Nawet w zacierze proporcja wody do słodu ma znaczenie. Zacier najczęściej trzeba wysłodzić, oczywiście wodą. To woda jest w  końcu głównym składnikiem piwa. Mimo tego, dość mało o niej wiemy.
    W tym artykule chcę zmierzyć się z tematem wody w kontekście naszego hobby.
    Z góry ostrzegam, że będzie trochę wzorów. Jeżeli jeszcze się nie wystraszyłeś to zapraszam.
     
    Dygresja: Zanim zaczniesz modyfikować wodę na potrzeby swoich warek to proszę o chwilę refleksji. Zadaj sobie pytanie: czy opanowałeś czystość? (w kontekście braku infekcji). Drugie pytanie: czy masz warunki i jesteś w stanie przeprowadzić poprawnie fermentację? Jeżeli wahałeś się odpowiedzieć twierdząco na którekolwiek z pytań, to nie ma sensu dostosowywać wody. Woda ma wpływ na smak, ale na tyle subtelny, że każdy błąd fermentacji spowoduje, że nie odczujesz różnicy. Błędy fermentacji je przykryją. Natura i wodociągi tak chciały, że woda z kranu najczęściej się nadaje do warzenia i zrobi dobre piwo. Napisałem najczęściej, bo czasem jest tak, że w piwie goryczka ściąga, na podniebieniu występuje dziwna szorstkość, a słody nie oddają w pełni swojego charakteru. Temu może być winien profil wody. Zapraszam i zachęcam do dalszego czytania, mam nadzieję, że na wodę spojrzysz jako składnik piwa, który coś znaczy.
     
    Artykuł opieram na poniższych źródłach:
    “Water”: A Comprehensive Guide for Brewers, John Palmer, Colin Kaminski, Brewers Publications 2013, ISBN 09-373-8199-3. Chyba jedyne, bardzo dobre, opracowanie na temat wody stricte w kontekście piwowarstwa. Aby zrozumieć niektóre koncepcje w niej przedstawione musiałem posiłkować się pozycjami i artykułami wymienionymi poniżej. “Chemia wody”, Jan R. Dojlido, Arkady 1987, ISBN 83-213-3359-1. Stąd będą pochodzić wzory, budowa cząsteczki wody oraz jej właściwości. Kompendium wiedzy o chemii wody. “How to Brew: Everything you Need to Know to Brew Beer Right the First Time”, John Palmer,30 maja 2006, ISBN 0937381888, pozycji chyba nie trzeba przedstawiać. Część, z której korzystałem można przeczytać on-line tutaj. “Opracowania tematów z chemii”, Praca zbiorowa pod redakcją Witolda Mizerskiego. Grupa Wydawnicza Adamantan s.c. 2017, ISBN 978-83-7350-431-8. Posiłkowałem się rozdziałem o obiegu wody na naszej planecie, wzbogacając go o dodatkowe informacje z [2] oraz [1]. Stanowi też źródło definicji części pojęć chemicznych. Książka mi bardzo pomogła zrozumieć wiele zagadnień chemicznych. https://wiki.piwo.org, kawał dobrej roboty jeżeli chodzi o dostosowywanie składu wody. W artykule również będę poruszał ten temat, ale nie tak obszernie. Nie ma sensu się powtarzać. Prelekcja Johna Palmera ‘Residual Alkanity & Brewing Water’. Jest to w zasadzie śmietanka wzięta z [1]. Artykuł: Understanding Residual Alkalinity & pH pochodzący z Brew Your Own. Pokrywa się z wiki [5], dodatkowo omawia zależność pomiędzy kolorem piwa a alkalicznością. Artykuł jest opublikowany w ramach wolnego dostępu.  
    Nie jestem związany z chemią i temat, z którym się mierzę był mi bardzo trudny. Na szczęście Kantor oraz Tibek wsparli mnie jako recenzenci techniczni. Dodatkowe wsparcie merytoryczne oraz stylistyczne otrzymałem również od żony, jako pierwsze przebiła się przez artykuł wprowadzając niezliczone poprawki. Ostateczny kształt artykuł uzyskał po wprowadzeniu poprawek i uwag otrzymanych od Alert, Oskaliber, Pan Łyżwa i Undeath.
    Nie sposób streścić całą chemię wody na kilku stronach, dlatego musiałem zastosować wiele uproszczeń. Recenzenci spisali się na medal, poprawiali mnie i kierowali ponownie na tory jeżeli gdzieś się myliłem. Po prostu właściwi ludzie na właściwych stanowiskach i to we właściwym czasie!
     
    Przeczytanie artykułu zajmie Ci wieczór a może nawet cztery. Możesz zasnąć, bo zdarza mi się troszeczkę przynudzać. Zaczynajmy.
     
    Przyroda to ‘psotnik’, tak wielki, że trzeba o tym opowiedzieć. Brzmi zagadkowo? Zagadki są po to by je rozwiązywać.
    1. Cykl hydrologiczny
    Cykl hydrologiczny to naukowa nazwa obiegu wody w przyrodzie. Woda na naszej planecie zajmuje większość powierzchni, jest to woda z rozpuszczoną dużą ilością minerałów, mówię oczywiście o wodzie słonej. Woda słodka powstaje w jednym z etapów cyklu hydrologicznego. Początkowo słona woda z mórz i oceanów, ale też lądowa, ogrzewa się i paruje. Słońce dostarcza energii, by proces w ogóle mógł zajść. Parująca woda to nic innego cząsteczki wody w postaci gazowej, myślę że analogia do gigantycznego destylatora jest w tym przypadku na miejscu, ‘psotnik’ się odnalazł. Lotne cząsteczki zostawiły rozpuszczone sole oraz zanieczyszczenia i unoszą się ku górze. Wysoko w atmosferze postać gazowa kondensuje się w wyniku obniżenia temperatury. To zjawisko jest namacalne, to oczywiście chmury. W chmurach woda może przybierać dwa stany skupienia: ciekły w postaci drobinek wody oraz stały jako kryształki lodu. Powierzchnia planety nie ma jednakowego ciśnienia. Różnice ciśnień w różnych obszarach powodują ruch powietrza, czyli wiatr, ten pcha chmury. Część z nich trafi na lądy. Przy odpowiednich warunkach spadnie na ziemię w postaci deszczu lub śniegu, czasem gradu. Po opadzie, woda ponownie paruje powtarzając cykl. Część jednak zdąży wsiąknąć w glebę, zasilić rzeki, jeziora oraz inne cieki wodne. Rzeki z czasem spłyną do morza lub oceanu i ponownie cykl się powtarza. Części wody, jak już wspomniałem, wsiąknie i powiększy zasoby wody podziemnej. W cyklu również dużą rolę odgrywają rośliny i zjawisko transpiracji. Mamy również zmagazynowane duże ilości wody w wiecznie zmarzniętych lodach.
     
    Cykl hydrologiczny przedstawia rysunek:
     

    W ten sposób mamy wodę nadającą się do picia, nawet jeśli źródłem jest słony ocean czy też obszar wodny o znikomym znaczeniu strategicznym, czyli kałuża.
     
    Nasze ujęcia wody pochodzą z wód gruntowych jak rzeki, studni np. oligoceńskich lub głębinowych. Do każdego źródła woda dotarła w nieco inny sposób i pod innymi warunkami. Wody powierzchniowe w krajach rozwiniętych, często są mocno zanieczyszczone przez odpady chemiczne, które wiszą w powietrzu lub osiadają na powierzchni. Podczas opadów woda je rozpuszcza i niesie ze sobą. Oprócz odpadów z atmosfery krople wody rozpuszczą w sobie niewielką ilość dwutlenku węgla. Woda wsiąkając w ziemię rozpuszcza minerały z gleby. Woda, która dociera do głębin przesącza się przez pokłady kredy, gdzie staje się bogatsza w wapń, a dolomity wzbogacają ją również w magnez. Ważną rolę w tym procesie odgrywa dwutlenek węgla i ciśnienie.
    Zakłady uzdatniania wody nie mają lekko. Zanim woda popłynie z kranu musi być do tego przygotowana. Zanieczyszczenia zostaną z niej usunięte, a mineralizacja utrzymana w normach. Większość pracy w tym temacie wykonują duże stacje uzdatniania wody, małe stacje przydomowe, lub jeszcze mniejsze systemy odwróconej osmozy (RO - reverse osmosis).
     
    Masz już pogląd jak to wszystko wygląda. Nie bez przyczyny wymieniłem kilka pierwiastków. W kontekście piwowarstwa będziemy najbardziej zainteresowani kilkoma rozpuszczonymi cząsteczkami/jonami, będzie to dwutlenek węgla CO2, wapń Ca2+ oraz magnez Mg2+. Pominę zanieczyszczenia innymi metalami i związkami - tym zajęły się punkty uzdatniania.
    Wspomniałem o rozpuszczalności, zacznę od wyjaśnienia tego zjawiska. By to zrobić musimy zejść do nieco mniejszego wymiaru. Opowiem trochę o cząsteczce wody [2].
     
    2. Właściwości wody
    Ograniczę się do minimum, jeżeli jesteś bardziej dociekliwy to zapoznaj się z definicją  wody, którą oferuje Wikipedia. Wszystkie rysunki zapożyczyłem z [2]. Świetna książka, z racji wieku niektórzy sensorycy piwni powiedzieliby że się ‘utleniła’. Otóż wcale nie, ciągle jest aktualna i świeża.
     
    Graficznie cząsteczka wody wygląda tak jak na poniższym rysunku.

    Tlen tworzy wiązanie z dwoma atomami wodoru. Jest to solidne wiązanie, ponieważ tlen potrzebuje dwóch elektronów, aby na powłoce walencyjnej miał oktet. Atomy wodoru są oddalone od siebie i usytuowane pod kątem blisko 105°. Atom tlenu zyskuje dwa elektrony, które mają ładunek ujemny. Wodór przekazał elektron i ma ładunek dodatni pochodzący od protonu. Przez niesymetryczną budowę cząsteczka H2O zyskuje moment dipolowy. Wypadkowy ładunek jest równy zeru, ale nierównomierne rozłożenie powoduje, że cząsteczka jest polarna (dipolowa). Można powiedzieć, w uproszczeniu, że przy tlenie jest trochę ujemna a przy wodorze trochę dodatnia. To daje wodzie super właściwości. Cząsteczki wody potrafią łączyć się w większe grupy tzw. asocjacje, chaotyczną sieć połączonych ze sobą cząsteczek sięgającą nawet do 100 sztuk [2]. Przerywane linie to połączone kolejne cząsteczki wody.

    Asocjacje czasem pękają w różnych miejscach pod wpływem sił zewnętrznych. Wtedy mówimy o zjawisku dysocjacji. Czasem wiązanie pęknie tak, że powstają dwa jony. Kation hydroniowy H3O+ oraz anion wodorotlenkowy OH-. Reakcja ta ma zapis: 2H2O ⇔ H3O+ + OH-, jest to dysocjacja. Strzałka skierowana w dwie strony oznacza, że reakcja przebiega w jednocześnie w obie strony. Gdzieś w szklance wody cząsteczki się rozpadają tworząc jony, a w innym miejscu jony łączą się ponownie tworząc wodę. Reakcja ta zachodzi bardzo, bardzo rzadko, ale ma ogromne znaczenie. Wrócę do tego jak będę omawiał pH.
     
     
     
    Jon, jest to atom lub grupa związanych atomów, która posiada ładunek elektryczny. Jeżeli ładunek jonu jest dodatni, to mówimy o kationie. Wtedy atom oddał jeden lub więcej elektronów i stał się przez to naładowany dodatnio. Jeżeli jest to więcej jak jeden elektron, to liczbę zapisuje się w górnym indeksie ze znakiem ‘+’ dla kationów, analogicznie ‘-’ dla anionów. Przykładem jest kation wapnia Ca2+, lub wodoru H+. Jeżeli atom lub grupa przyjęła elektron, wtedy mówimy o anionach, które mają ładunek ujemny. Przykład to wodorotlenek OH- oraz anion węglanowy CO32-.
     
    Dygresja: W rozważaniach, kationami będą metale pochodzące z rozpuszczonych soli, już wymieniony Ca2+, Mg2+ ale też Fe2+. Numer w indeksie górnym to ładunek jonu, w przypadku kationów metalicznych jest równy stopniu utlenienia. Utlenienie to nie jest reakcja związana tylko z tlenem jako pierwiastkiem. Warto zapoznać się z definicją reakcji redoks. W piwie za utlenianie odpowiada nie tylko tlen, ale też szereg procesów w efekcie powodujących jego starzenie w mniej lub bardziej przyjemny sposób.
     
     
     
    Jak to się dzieje, że woda rozpuszcza? Wsypuję łyżkę soli a ta znika. Cóż, są trzy drogi by woda rozpuściła substancję [2]:
    zawiesina - cząsteczki o rozmiarze większym jak 0.5µm są zawieszone w wodzie. Z czasem pod wpływem pewnych sił i warunków, jak temperatura i ciśnienie sedymentują (opadają) na dnie. koloid - rozmiar cząsteczki poniżej 0.5µm, ale większy aniżeli 1nm. Ten stan w odpowiednich warunkach może utrzymywać się permanentnie. W piwach kolodiy najczęściej sedymentują po długim okresie czasu. Nawet piwo pszeniczne wyklaruje się w odpowiednio długim czasie. Chłód przyśpieszy ten proces. Czy Twoje piwo to koloid? Możesz to łatwo sprawdzić wykorzystując efekt Tyndalla (en). roztwór - cząsteczki mniejsze od 1 nm. W tym artykule będę mówił o tym typie rozpuszczenia.  
    Dygresja: Zawiesiny i koloidy są czymś naturalnym w piwie domowym. Są spowodowane przez cząsteczki chmielu, białka, pozlepianych tanin z białkami, czasem skrobi. Zawiesiny i koloidy można odfiltrować mechanicznie lub strącając je chemicznie. Teraz wiesz jakim filtrem mechanicznym musisz się posługiwać, by pozbyć się cząstek zawieszonego chmielu. Dlatego w piwowarstwie domowym filtrują ułożone złoża a nie wielkość oczek w filtrze oraz czas filtracji. Wybierając filtrator ważniejszym parametrem będzie jego powierzchnia wymiany. By znacznie ograniczyć ilość zawiesiny/koloidu lepiej użyj szybkiego schłodzenia, z angielskiego zwanego cold crash (CC). Jeżeli jest to za mało skuteczne, to zawsze możesz użyć żelatyny, zolu krzemionkowego, mchu irlandzkiego, isinglasu.
     
    Rozpuszczalność najczęściej zależy od temperatury i ciśnienia. Wraz ze wzrostem temperatury rozpuszczalność minerałów/soli rośnie, gazów maleje (są wyjątki od tej reguły). W przypadku gdy ciśnienie wzrasta a temperatura spada wtedy rozpuszczalność gazów jest większa.
     
    Sole rozpuszczają się dysocjując. Cząsteczka rozpada się na jony. Następnie woda, dzięki właściwościom polarnym otacza taki jon i utrzymuje go zawieszonego w strukturze. Myślę, że ilustracja powie więcej aniżeli suchy opis. Tak wygląda rozpuszczona cząsteczka soli kuchennej:

     
    Sól kuchenna (NaCl) jest jak najbardziej wykorzystywana do modyfikacji wody w piwowarstwie. Przeciwne ładunki się przyciągają, polarność wody gra tu kluczową rolę. Kation sodu Na+ zostaje otoczony przez cząsteczki wody. Jako, że bliżej tlenu znajduje się ładunek ujemny to cząsteczki ‘obrócą’ się tak, aby wzajemnie się przyciągać. W przypadku anionu chloru Cl- bliżej są kationy wodoru H+. Tak właśnie wygląda rozpuszczanie substancji w roztworze. Zauważ też, że do rozpuszczania jednego jonu potrzeba jest kilku cząsteczek wody. Jest to jeden z powodów, dlaczego różne substancje rozpuszczają się w różnym stopniu.
     
    Co w przypadku takich cząsteczek jak dwutlenek węgla CO2? Jest to cząsteczka liniowa. Do atomu węgla po przeciwnych stronach dołączone są atomy tlenu (cząsteczka dwutlenku węgla jest tak liniowa, że mogę stworzyć jej rysunek w tekście: O=C=O). Nie wykazuje właściwości polarnych. Nie jest to też jon. W tym przypadku woda również sobie poradzi, w mniejszym stopniu, ale zawsze. Dwutlenek węgla zostanie otoczony przez dwie cząsteczki wody [1], które są w stanie utrzymać go w swojej strukturze. Rozpuszczone cząsteczki, w odróżnieniu od wolnych są często zapisywane w postaci CO2(aq) lub CO2*.
    Szereg reakcji chemicznych zachodzących w wodzie jak: utlenienie, hydroliza oraz kwaśna hydroliza [2] umożliwią lub przyspiesza rozpuszczanie. W przypadku hydrolizy woda jest zarówno rozpuszczalnikiem jak i substratem (bierze udział w reakcji). Przykładowo wapno, które jest wypłukiwane z pokładów kredy (CaCO3). Reakcja ma następujący przebieg: CaCO3 + 2H2O ⇔ Ca(OH)2(aq) + H2(CO3)(aq). Czyli dwie cząsteczki wody weszły w reakcję z kredą, wapno zostało uwodnione, powstało wapno gaszone i kwas węglowy. Na dodatek taką chemię pijesz pod ładną nazwą minerałów.
     
    Masz już pojęcie jak sole mineralne oraz gazy rozpuszczają się w wodzie. Ilość oraz rodzaj tych substancji najczęściej odnajdziesz w raporcie wody. W piwowarstwie najważniejszymi elementami raportu są: alkaliczność, wartość pH oraz zawartość wapnia i magnezu. Wapń i magnez występuje głównie w postaci węglanów, siarczanów i chlorków. To wszystko trzeba wyjaśnić i usystematyzować.
    3. Odczyn i skala pH
     
    Wartość pH odgrywa jedną z kluczowych ról podczas zacierania. Zanim podam definicję, chcę powiedzieć czym jest ten współczynnik w ujęciu chemicznym  oraz rolę w procesie warzenia. Jeżeli jesteś niecierpliwy, przeskocz kilka akapitów.
    Wracam do wzoru, który przedstawiłem na początku. Pozwolisz, że przypomnę. W czystej wodzie nieustannie zachodzi reakcja samorzutnego rozpadu cząsteczek. W wyniku tego powstają jony hydroniowe H3O+ oraz wodorotlenkowe OH-. Reakcja jest dwukierunkowa, czyli jony łączą się ze sobą tworząc ponownie cząsteczkę wody. Dzieje się to ciągle i na pewnym poziomie. W szklance herbaty czy też piwa w jednym miejscu cząsteczka się rozpada a w innym jony się łączą budując cząsteczkę wody.
     

     
    Na rysunku wygląda to jakby jon H+, ta jasna szara kuleczka, skakał z jednej cząsteczki do drugiej. Nie jest to błędne myślenie. W rzeczywistości wolne jony H+ w roztworze nie występują, natychmiast tworzy się jon hydroniowy H3O+ albo inny związek. W rozważaniach i wzorach często spotyka się zapis, że woda ulega dysocjacji w uproszczony sposób H2O ⇔ H+ + OH-. Myślę, że w rozważaniach będzie łatwiej posługiwać się tym uproszczeniem. Zatem jak zauważysz we wzorach H+ to w rzeczywistości jest to jon hydroniowy H3O+.
     
    Dysocjacja jonowa jest to reakcja chemiczna i można wyrazić ją za pomocą iloczynu jonowego Kw. Okazuje się, że ta reakcja przebiega na pewnym poziomie równowagi. Można ją zapisać za pomocą liczb.
    Skracam trochę drogę przez mękę i pomijam równanie stałej reakcji. Jeżeli jesteś zainteresowany i chcesz dowiedzieć się więcej to w [2] lub [1] ten temat jest omówiony bardzo szczegółowo, nie chcę przepisywać książek a przedstawić wynik rozważań.
     
     
    Kw=[H+][OH-]
     
    Kw = 1,0 * 10-14 w temperaturze ~25°C
     

     
    W określonych warunkach Kw jest stałe, oznacza to, że balans stężeń poszczególnych jonów musi być zachowany. Jeżeli zaburzysz równowagę jonów, przykładowo dolewając trochę kwasu co wprowadzi jony H+, to stężenie jonów OH- zmniejszy się. Równanie nadal będzie spełnione. Działa to w dwie strony, dodając silną zasadę po pewnym czasie zmniejszy się stężenie jonów [H+]
    W czystej wodzie stężenie jonów [H+] i [OH-] jest takie same. Zatem chcąc policzyć stężenie jednej grupy wystarczy podstawić ją dwukrotnie do wzoru Kw = [H+] * [H+], dalej  [H+] = pierwiastek(Kw) = 1,0 * 10-7. W czystej wodzie tyle samo wyniesie stężenie jonów [OH-].
     
    Dygresja: W czystej wodzie stężenie jonów jest bardzo małe. Uruchom wyobraźnię. W paczce drożdży płynnych Wyeast znajduje się 100 miliardów komórek drożdżowych. Gdyby założyć, że zachowują się tak jak cząsteczki wody, to tylko 10 pojedynczych komórek ‘uległoby dysocjacji’. Jeżeli rozbudziłem ciekawość i chcesz się dowiedzieć więcej zapoznaj się z [2].
     
    Wartość pH zacieru powinna być w granicach 5.2-5.6, bo w tym przedziale wypadkowa pracy enzymów jest najbardziej wydajna. Enzymy również pracują poza tym zakresem, jednak nie są już tak efektywne. Im dalej od optimum tym słabiej pracują. Jako piwowarzy, naszym celem jest stworzenie warunków, aby mogło zachodzić scukrzanie. Pierwszym czynnikiem jest temperatura, przerwy temperaturowe aktywują enzymy. Drugim, ale nie ostatnim, czynnikiem jest pH. Możemy pomóc, stabilizując je na optymalnym poziomie. Zalety optymalnego pH to większa wydajność. Lepsza praca enzymów, mniejsza szansa przedostania się łańcuchów skrobi do piwa. Filtracja może okazać się łatwiejsza na skutek dobrego rozłożenia betaglukanów i cukrów. Dodatkowo w niższym pH przedostanie się znacznie mniej garbników z łuski, to z kolei przełoży się pozytywnie na smak. Zwiększy się odfermentowanie piwa. Odczyn pH również ma wpływ na rozkład protein. Podczas gotowania będzie większy przełom, a to oznacza klarowniejsze piwo. Przy okazji do brzeczki dostanie się więcej związków azotu (FAN) poprawiających fermentację. Poprawi się również stabilność piany. Jednym słowem piwo będzie lepsze.
    Już wiesz na co wpływa pH i czemu warto dbać o jego optymalny poziom. To jest dobry moment na wprowadzenie definicji.
     
     
        Skala pH jest wskaźnikiem ilościowym kwasowości i zasadowości roztworów wodnych. Wartość bazuje na stężeniu jonów wodorowych [H+]
     
     
    Pojęcie pH wprowadził Søren Peder Lauritz Sørensen. Powyższa definicja jest uproszczona, ale w zupełności wystarczająca do celów piwowarskich. Jeżeli chcesz się dowiedzieć więcej to zerknij tutaj albo tutaj.
     
    Wartość pH określa się według poniższego wzoru:
     
     
    pH = -log([H+])
     
     
    Mimo skomplikowanego zapisu jest to bardzo wygodne. Przed chwilą policzyłeś stężenie jonów [H+] i [OH-] w czystej wodzie, wynosi ono 1,0 * 10-7. Liczba jest bardzo mała i niewygodna w zapisie. Podstawiając ją do wzoru na pH otrzymasz 7. Prawda, że wygląda to lepiej?
    Jeżeli w wodzie rozpuścisz silny kwas, na skutek czego będzie wzrastała ilość jonów [H+] a malała [OH-], bo stała reakcji musi być zachowana, to wartość pH zacznie spadać. Na pierwszy rzut oka wydaje się to nielogicznie, coś dodałeś a wartość spadła. Zauważ, że stężenie wyrażone jest jako ujemny wykładnik 10-7 (to samo co zapis 1/107). Zatem jak przybywa jonów wodorowych, to potęga staje się coraz większa, prosta matematyka: 1/107 < 1/103 < 1/10 < 0. Dodatkowo, by pozbyć się minusa został postawiony on przed logarytmem. Ponieważ tak jest wygodniej. Na samym dole skali jest 100, podstawiając do wzoru, pH = -log(100) = 0. W drugą stronę dzieje się tak samo, aż do momentu gdy, nie będzie już jonów H+. Wtedy wartość wynosi dokładnie tyle co Kw, podstawiając do wzoru pH = -log(Kw) = 14.
    Takie są granice skali pH. Im bliżej 0 tym bardziej kwaśny odczyn. Im bliżej 14 tym bardziej zasadowy. Środek skali to odczyn obojętny i wynosi 7.
     
    Zatem pH również określa zależność pomiędzy stężeniami [H+] i [OH-]. Niektóre reakcje chemiczne wymagają, by stężenie jednych jonów było większę. Enzymy scukrzające, czyli amylazy, najlepiej się czują w pH około 5.5. Czyli jony H+ są w większości i biorą udział w reakcjach, które rozcinają długie łańcuchy skrobi.
     
    Dygresja: skala pH nie ma większego zastosowania w przypadku mocno stężonych kwasów i zasad. W domowym piwowarstwie masz jednak szansę spotkać się z tak mocnymi stężeniami w przypadku mycia lub dezynfekcji. Wtedy obowiązkowo rękawice na dłonie oraz okulary ochronne. Roztwór o pH = 0 otrzymasz poprzez rozpuszczenie 1 mola kwasu solnego (HCl) w 1dm3. Roztwór o pH = 14 otrzymasz rozpuszczając 1 mol wodorotlenku sodu (NaOH). Suchy żart chemiczny: NaOH - zasady ponad wszystko.
     
     
     
    Mol jest to jednostka liczności materii używana przez chemików. Spotkałeś się już zapewne z różnymi jednostkami jak tuzin, mendel, kopa, kwadrans. Mol jest to kolejna nazwa, tylko trochę większej wartości, wynosi 6,022140857(74)×1023 (liczba Avogadra). Mówiąc 1 mol kwasu solnego mam na myśli około 6×1023 cząsteczek HCl. Mole są bardzo wygodne w przypadku reakcji chemicznych. Reagując 2 mole wodoru z 1 molem tlenu powstaje 1 mol wody (2H2 + O2 ⇔ 2H2O). Mole na wagę oblicza się również w prosty sposób, używa się do tego tabel z masą molową pierwiastków. Najczęściej spotykane cząsteczki są już skatalogowane. Przykładowo 1 mol wody waży około 18 gramów.
     
     
     
    Skala pH to skala logarytmiczna. Różnica między pH = 4 a pH = 5 to 10 krotna różnica stężeń. Pomiędzy pH = 3 a pH = 6 jest tysiąckrotna. Każdy jeden punkt przyrostu wartości pH powoduje 10 krotną różnicę w stężeniu, przesuwa rząd wielkości o 1. Pomiędzy odczynem neutralnym a skrajnym jest 10 milionowa różnica stężeń.
     
    Dygresja: Zerknij do tego artykułu by dowiedzieć się więcej o logarytmach. Warto, bo dowiesz się takich ciekawostek, że nasze zmysły również działają w oparciu o tę skalę.
     
    Wszędzie tam gdzie jest roztwór wodny można mówić o pH. W przypadku wielu produktów, które nas otaczają i są zbudowane głównie z wody jesteś w stanie wyznaczyć pH. Żywność, elektrolit  baterii, nasze płyny ustrojowe, środki czystości. Nie będę się rozpisywał. Grafika powie o wiele więcej. Piwo można umieścić gdzieś pomiędzy octem a mlekiem.
     


     
    Wartość pH jest ważna. Pozwala stwierdzić jak i czy w ogóle enzymy pracują. Jednakże miej na uwadze, że jest to wskaźnik, który wynika z szeregu reakcji chemicznych. W piwie są to reakcje, na skutek których pH ciągle maleje, od samego początku procesu przygotowywania piwa. Żeby nie było tak łatwo, są również reakcje, które temu przeciwdziałają. Czas wprowadzić najważniejszy parametr wody w naszym hobby, czyli alkaliczność.
     
    4. Alkaliczność z punktu widzenia piwowara
    Alkaliczność (zasadowość) wody, jest to właściwość określająca zdolność do zobojętniania kwasów. Alkaliczność jest tym większa, im więcej rozpuszczonych jest w wodzie węglanów i wodorowęglanów.  Kolejny raz przedstawiłem uproszczoną definicję, tutaj masz szczegółową. Uwaga: alkaliczność nie zależy od współczynnika pH odczytanego z raportu wody, za chwilę to wyjaśnię.
     
    Z punktu widzenia piwowara alkaliczność możesz traktować jako opór brzeczki przed przed zmianą pH. Zauważ, że napisałem brzeczki, a nie samej wody, bo również słód w pewnym zakresie ma wpływ na spadek pH poprzez swoje właściwości buforujące.
    Alkaliczność możesz sobie wyobrazić jako gąbkę do mycia. Jest w stanie wchłaniać płyn, ale tylko do pewnego momentu. Im większa gąbka tym więcej jest w stanie wchłonąć. Po przekroczeniu pewnej objętości nie jest w stanie przyjąć nawet pojedynczej kropli. W tej analogii płyn traktuj jako jony H+ a gąbka to węglany wiążące te jony.
     
     
     
    Podczas zacierania, pH zacieru spada, staje się on coraz bardziej kwaśny. Dzieje się to głównie na skutek reakcji fosforanów zawartych w słodzie z wapniem. Fosforany stanowią około 1% wagi słodu. Jest ich bardzo dużo w stosunku do wapnia. Spadek pH będzie możliwy do momentu, aż nie zabraknie wapnia. Reakcja jest jednokierunkowa i wygląda tak:
    10Ca2+ + 12HCO3- + 6H2PO4-1 + 2H2O → Ca10(PO4)6(OH)2 + 12CO2 + 12H2O + 2H+
    Fosforany H2PO4-1 reagują z rozpuszczonym wapniem Ca2+ i wodorowęglanami HCO3 , efektem jest hydroksyapatyt, który się strąci i osiądzie, dwutlenek węgla, woda oraz kationy H+ powodujące spadek pH podczas zacierania. Ta reakcja pochłania wapń w pierwszych kilkunastu minutach zacierania [1]. To jest główny powód, dla którego warto poczekać z pomiarem pH około 15 minut.
     
     
     
    Mówiąc o alkaliczności wody, tak naprawdę mówimy o dwutlenku węgla rozpuszczonym w wodzie. Dwutlenek węgla dostał się do wody na kilka sposobów m.in. z atmosfery. Rośliny podczas oddychania również wytwarzają dużo CO2. Jest też odzyskiwany z minerałów zawierających węglany, przez które woda się sączy. Rozpuszczalność dwutlenku węgla jest stosunkowo mała i zależy od temperatury oraz ciśnienia. W temperaturze pokojowej w jednym litrze wody rozpuszczone jest około 0.5mg CO2. Obniżając temperaturę do bliskiej 0 - dwutlenku węgla rozpuści się dwukrotnie więcej. Wody głębinowe, gdzie panuje większe ciśnienie i niższa temperatura mają w sobie rozpuszczone dużo więcej dwutlenku węgla aniżeli wody powierzchniowe.
    Dwutlenek węgla w wodzie może występować w postaci rozpuszczonej CO2(aq). Albo być uwięziony w węglanach. Niewielka część rozpuszczonego dwutlenku reagując z wodą tworzy kwas węglowy H2O + CO2(aq) ⇔ H2CO3. Jest to słaby kwas i dysocjuje (rozpada się na jony w roztworze wodnym) w dwóch reakcjach.
    H2CO3 ⇔ HCO3− + H+, kwas węglowy rozpada się na wodorowęglan oraz kation hydroniowy
    HCO3− ⇔ CO32− + H+, wodorowęglan rozpada się na węglan oraz kolejny kation hydroniowy.
     
    Kwas węglowy i sposób w jaki się rozpada daje możliwość rozpuszczenia się w wodzie wapnia oraz magnezu. Gdy woda sączy się przez pokłady wapnia, kwas węglowy w niej zawarty dysocjuje oddając węglany. Te chętnie wiążą się z wapniem. Powstaje węglan wapnia CaCO3 (CaCO3 ⇔ Ca2++ CO32-). Płynąc przez dolomity, oprócz wapnia zyska również magnez. Pod ziemią, gdzie panuje większe ciśnienie, rozpuszczone jest więcej dwutlenku węgla i minerałów. Wszystkie węglany rozpuszczone w wodzie składają się na alkaliczność.
     
    Reakcje chemiczne mają to do siebie, że przebiegają na pewnym poziomie i w równowadze. Wapń zawłaszczył sobie cześć węglanów. Zatem reakcje będą dążyły do równowagi. Zwolni się trochę miejsca, powstanie nowy kwas węglowy. I znowu zostanie wypłukane trochę wapnia w postaci CaCO3. Po pewnym czasie reakcję znajdą punkt równowagi. Powyżej przedstawiłem uproszczony cykl węglanowy. Sekwencja reakcji chemicznych dążąca do równowagi. Rysunkowo można przedstawić to tak [1]:
     

    Układ będzie zawsze dążył do równowagi, oznacza to że ilość rozpuszczonego dwutlenku węgla musi być w harmonii z wszystkimi postaciami. Jeżeli zburzysz układ, przykładowo podnosząc temperaturę, co zmniejszy ilość CO2, to z czasem wytrąci się osad w postaci węglanu wapnia CaCO3. Jeżeli dodasz trochę węglanu wapnia CaCO3 oraz podniesiesz ciśnienie CO2, to węglan wapnia rozpuści się o wiele szybciej. Te reakcje nie dzieją się momentalnie, potrzebują czasu. Co więcej skutek widzisz codziennie. Kamień na słuchawce prysznica, kranie, sedesie, powstaje na skutek nagłego obniżenia ciśnienia wody. Rozpuszczalność dwutlenku węgla spada i układ węglanowy dążąc do równowagi wytrąca węglan wapnia. Sytuacja analogiczna dzieje się w czajniku elektrycznym, tam na skutek zmiany temperatury. Gospodyni domowa radzi: użyj octu to kamień nie będzie problemem.
     
    Jeszcze jedna uwaga. Postać węglanów zależna jest od pH i wygląda tak [1]:

     
    W zakresie pH zacierania, czyli pomiędzy 5.2 - 5.6 głównie będzie występował pod postacią kwasu węglowego. Stała pK1 wyznacza równowagę między kwasem węglowym a wodorowęglanami, pK2 jest to stała równowagi między węglanami a wodorowęglanami. W wodzie z kranu, gdzie pH najczęściej jest powyżej 7 dominującą postacią jest wodorowęglan.
     
    Na skutek reakcji wapnia z fosforanami, pH brzeczki spada. Układ węglanowy przesunął się w kierunku postaci kwasu węglowego. Pytanie jak to się ma do alkaliczności i tego oporu przed zmianą pH. Do sedna sprawy. Układ węglanowy to reakcje, które działają jak bufor. Bufor wiąże kationy H+, tym samym zapobiega zmianie pH. Oczywiście jest to w stanie zrobić tylko do swojej pojemności, później pH nadal będzie spadało. W brzeczce na skutek ciągłego obniżania pH pojemność tego bufora będzie przekroczona. Jednakże mimo przepełnienia zwiąże część jonów H+ i pH nie spadnie tak mocno. Cała sztuka to tak dobrać alkaliczność wody, by pH zatrzymało się w przedziale optimum zacierania. Druga zmienna tego układu równań, to odpowiednia ilość wapnia.
    W przypadku zacierania buforuje następująca reakcja: HCO3- + H+ ⇔ H2CO3. Wodorowęglany wchodzą w reakcję z kationami H+ pochodzącymi głównie z reakcji fosforanów z wapniem, powstrzymując spadek pH, do momentu aż są wodorowęglany wyczerpią.
     
     
    Bufor na przykładzie: dolewam trochę silnego kwasu do wody alkalicznej, bogatej w węglany. Okazuje się, że woda nie zmienia pH, bo węglany wyłapują i wiążą jony H+. Trwa to oczywiście do pewnego momentu, aż bufor się przepełni. Wtedy pH zacznie spadać w tempie dostarczania jonów H+. Na tej zasadzie działają testy kropelkowe, o których opowiem już niedługo w rozdziale o pomiarach wody. Im więcej węglanów w wodzie tym większe właściwości buforujące. Im większe wartości buforujące tym większy opór przed zmianą pH. W praktyce oznacza to, że jeżeli wybierzesz wodę bardzo alkaliczną i zrobisz lekkie jasne piwo, to może okazać się, że pH jest dalekie od optimum. Enzymy będą pracowały o wiele gorzej, zacieranie będzie trwało długo i może zabraknąć im wapnia przez co nie skończą pracy. Zostanie sporo skrobi. W skrajnych przypadkach może się nie udać kompletnie. Podobnie w przypadku wybrania wody mało alkalicznej i warzenia piwa z dużą ilością ciemnych i karmelowych słodów. Kwas zawarty w słodach pochodzi głównie z reakcji Maillarda i dodatkowo obniża pH. To oznacza, że pH zacieru może spaść za nisko i ponownie enzymy będą miały problemy z pracą.
     
     
     
    Dygresja: Odzyskanie równowagi w cyklu węglanowym może zająć trochę czasu. Większość tych reakcji nie jest demonem prędkości. Dlatego modyfikacje wody, zwłaszcza gdzie używane są węglany warto przeprowadzać kilka godzin przed warzeniem. Będzie to miało jeszcze jedną zaletę. W przypadku gdy Twoja woda jest dezynfekowana związkami chloru, to w kilka godzin większość chloru zleci i piwo będzie lepsze.
     
    W praktyce, policzenie powyższego jest żmudne i łatwo o pomyłkę. Na ratunek przychodzi Paul Kolbach, dokonał on pewnego odkrycia, znalazł pewną zależność.
    5. Twardość wody
    Zanim przejdę od odkrycia Kolbacha, muszę powiedzieć czym jest twardość wody. Będzie potrzebna, aby policzyć ilość wapnia i magnezu w wodzie. Alkaliczność to głównie kompleksy węglanów z wapniem i magnezem (CaCO3, MgCO3). W wodzie oprócz węglanów rozpuszczone są sole mineralne. Najważniejsze w piwowarstwie to oczywiście sole wapnia i magnezu. Najczęściej w postaci siarczanu wapnia CaSO4 inaczej gipsu, chlorku wapnia CaCl2, siarczanu magnezu MgSO4 oraz chlorku magnezu MgCl2. Stężenie wapnia jest najczęściej 4-5 krotnie większe od stężenia magnezu. W wodzie pitnej występują również inne sole. Jednakże jest ich dużo mniej w porównaniu do wyżej wymienionych.
     
    Cała potrzebna teoria już jest, czas ubrać to w definicję:
     

       Twardość wody jest to suma stężeń kationów wapnia [Ca2+] i magnezu [Mg2+].
     
     
    Twardość wody można podzielić na:
    węglanową/przemijającą - w tym przypadku wapń i magnez związany jest z węglanami (CaCO3, MgCO3). Twardość tą łatwo zmniejszyć, chociażby poprzez przegotowanie wody. niewęglanową/trwałą - są to pozostałe sole, z którymi związał się wapń i magnez . Będą to głównie chlorki i siarczany (CaSO4, CaCl2, MgSO4, MgCl2), ale też zdecydowanie mniej liczne azotany i fluorki.  
    Twardość węglanowa to nie to samo co alkaliczność. Twardość liczy stężenia wapnia i magnezu, alkaliczność zajmuje się węglanami. W rachunkach współdzielą te same związki czyli węglan wapnia i magnezu, ale parametr twardości bierze pod uwagę kationy Ca2+  i Mg2+, natomiast  alkaliczność anjony CO32- reagujące z kationami [H+].
     
    Dygresja: Zakłady uzdatniania wody dbają o nasze zdrowie jako populacji, nie koniecznie o kondycję drożdży w Twoim fermentorze. To co pijemy z kranów ma związki, które są bezpieczne i potrzebne ludziom. Zatem nie uświadczysz takich soli jak chlorek cynku ZnCl2, który jest potrzebny drożdżom. Warto, abyś dodał trochę pożywki piwowarskiej, przynajmniej do startera, która zawiera cynk. Cynk jest potrzebny drożdżom do namnażania. Masz już kilka warek na koncie? opanowałeś warsztat, ale problemy z długim startem drożdży? Spróbuj dodać pożywki z cynkiem, może pomóc.
     
    6. Alkaliczność rezydualna RA
    Badania i eksperymenty Kolbacha doprowadziły do wyznaczenia zależności pomiędzy alkalicznością oraz reakcjami z wapniem i magnezem podczas zacierania. Odkrycie wskazało, że wapń oraz magnez powoduje obniżenie jej alkaliczności w przewidywalny, zatem obliczalny, sposób. W przypadku wapnia 3.5 jednostki tego metalu obniża alkaliczność o 1. W przypadku magnezu, aby obniżyć alkaliczność o 1 potrzeba aż 7 jednostek. Na tej podstawie można zapisać już wzór [1] alkaliczności rezydualnej RA. Jest to alkaliczność z którą trzeba się zmierzyć. Czyli tak dobrać parametry wody, by pH zacieru zatrzymało się w optimum.
     
     
    mEq/L RA = mEq/L Alkaliczność- (mEq/L Ca/3.5 + mEq/L Mg/7)
     
     
     
     
    W powyższym wzorze występue jednostka mEq/L są to miliekwiwalenty. W naszych raportach wody częściej spotykana konkretna jednostka ppm (mg/l) jako CaCO3.
    Porównanie jakichkolwiek wartości ma sens, jeżeli są w tej samej skali/jednostkach. Waga 10 kilogramów, to nie to samo co 10 funtów. Prędkość 10 metrów na minutę, nie jest taka sama jak 10 mil na godzinę. Trzeba te wartości znormalizować, sprowadzić do wspólnej jednostki, albo wyrazić jedną jako drugą. Można też znaleźć wspólny punkt odniesienia. Tym właśnie jest mEq/L. Jeżeli chodzi o alkaliczność oraz stężenia jonowe, to wygodnie jest posługiwać się wagami, bo wiadomo ile tego dodać, bez zbędnego przeliczania moli na wagę. Waga wyrażona jako ppm lub inaczej mg/l jest chyba najczęściej stosowana w przypadku roztworów wodnych. Aby było ciekawiej, w przypadku alkaliczności przelicza się ją jako CaCO3 i ma to sens. Chodzi o ilość substancji, która przereaguje. Alkaliczność jest to opór przed zmianą pH, ale można na nią spojrzeć trochę inaczej. Alkaliczność pochłania jony H+ do momentu, aż nie jest w stanie ich więcej przyjąć. Po przepełnieniu pH spada. Jony H+ to nic innego jak kwas. Ustalam punkt odniesienia powiedzmy pH = 4.5 i dodaję kwas powoli, aż osiągnę ten wynik. Wyszło mi X miligramów tego kwasu. Gdybym użył innego kwasu to wyszłoby Y miligramów, nadal brak jednoznaczności. Dlatego potrzebny jest kolejny krok, punkt odniesienia. Mając ilość tego kwasu mogę teraz policzyć ile minimalnie miligramów CaCO3 potrzeba, aby ta sama ilość kwasu przereagowała calkowicie z węglanem wapnia. Nieważne, który kwas wybiorę, ilość CaCO3 wyjdzie taka sama. Ta minimalna ilość, to jest właśnie odpowiednik alkaliczności wyrażonej w ppm (mg/l) jako CaCO3. Pozostaje jeszcze wapń i magnez. Są w postaci stężeń. Trzeba je przeliczyć na mg/L. Tabele chemiczne w rękę i sprawdzam ile waży pierwiastek Ca a ile Mg. Na podstawie stężeń i wagi pierwiastka można obliczyć całkowitą wagę. Ostatecznie mam taką formułę:
     
     
    RA = Alkaliczność -  (Ca/1.4 + Mg/1.7)
     
     
    Rezydualna alkaliczność (RA) oraz alkaliczność, wyrażona jest w ppm jako CaCO3, wapń oraz magnez w ppm. Teraz już można posługiwać się wygodnymi wagami.
     
     
    Przykład. Raport wody wymienia: wapń Ca = 70 ppm, magnez Mg = 14 ppm, alkaliczność = 80 ppm jako CaCO3. Ze wzoru wychodzi RA = 80 - (70/1.4 + 14/1.7) ~= 28. Wartość 28 jest to alkaliczność rezydualna, z którą musisz się zmierzyć modyfikując wodę lub też dobierając odpowiedni styl piwa. O tym za chwilę.
    Jeżeli woda będzie mało alkaliczna, czyli zawiera mało węglanów, natomiast zawartość siarczanów i chlorków będzie podwyższona, to RA może spaść poniżej 0. Jest to jak najbardziej poprawny wynik.
    Zanim przejdę do modyfikacji wody muszę opowiedzieć jeszcze o wpływie słodu na alkaliczność oraz o współczynniku ilości wody do słodu w kotle zaciernym. Badania Kolbacha uzupełnili Troester, Bies oraz A.J. deLange. Aby wiedzieć, kto miał jakie zasługi to proszę zapoznaj się z [1], w tym artykule przedstawię tylko wyniki badań. Pierwszym wynikiem eksperymentów było odkrycie, że stosunek zasypu do ilości słodu, ma wpływ na alkaliczność rezydualną.

     
    RA będzie większe w zacierze gęstszym. Tabela przedstawia wartość RA dla słodu pilzneńskiego i monachijskiego. Każdy wiersz to gęstość zacieru od 2 litrów do 5 litrów na kilogram. Robiłeś kiedyś RISa? Na 100%, by mieć większy ekstrakt robiłeś gęstszy zacier. Tym samym również miałeś większe RA. W tym stylu jest to bardzo dobre, ponieważ duża ilość kwasów z ciemnych słodów została zobojętniona i pH nie spadnie za nisko. W drugą stronę. Jakbyś zrobił bardzo gęsty zacier i super jasne piwo, wtedy pH może stabilizować się ponad optimum. Przy zasypie 3:1 - 4:1 nie ma spektakularnej zmiany RA. Co więcej taki współczynnik również jest bardziej optymalny dla amylaz (rozpuszczalność cukrów jest lepsza w rzadszym zacierze). W przypadku jeżeli zacierasz w kociołku automatycznym, na skutek mocnego rozrzedzania wpływ na RA będzie mniejszy.
     
    Gęstość zacieru pozwoliła wyciągnąć wnioski i zapewne przynieść duże oszczędności dużym graczom. Przyszedł czas na taki szczegół jak grubość śruty wpływa na właściwości buforujące. Nie ma już tak spektakularnych wyników, ale można zauważyć, że bardzo drobno ześrutowany/sproszkowany/mączny (pulverized) słód bardziej podnosi RA aniżeli śrutowanie grube. Przyjrzyj się poniższej tabeli.

    Ponownie słód pilzneński i monachijski. Szczelina śrutownika od mąki/proszku do 1.2 mm. Zatem bardzo drobna śruta nieco więcej podnosi RA. Znowu duzi gracze oszczędzają. My piwowarzy, może mali co do skali ale wielcy co do jakości, możemy również zaoszczędzić. Masz śrutownik? - zacznij śrutować trochę drobniej, ale nie przesadź na tyle, że zatrzyma Ci filtrację. Będzie większa ekstrakcja i trochę większe RA, co jest dobre w przypadku ciemniejszych piw.
     
    Przyszedł czas na kolejne badanie. Jak rodzaj/typ słodu wpływa na kwasowość/zasadowość zacieru. Przyjrzyj się tabeli.
     

     
    Dokładną analizę tabeli poznasz w [1]. Skupię się tylko na dwóch kolumnach. Zerknij w kolumnę pH oraz koloru. Zauważ relację, im ciemniejszy słód, tym pH było niższe. Można też powiedzieć, im ciemniejszy słód tym większego RA wymaga, by pH nie spadło za nisko. Wnioskiem z eksperymentu jest to, że piwa z dużą ilością słodów ciemnych i karmelowych muszą mieć wodę bardziej alkaliczną. Inaczej pH może spaść za nisko i efektywność zacierania będzie mniejsza. W przypadku piw jasnych woda powinna być mniej alkaliczna.
     
    Zadaniem piwowara jest dobranie tak alkaliczności wody oraz głównie wapnia, mniej magnezu, aby pH zatrzymało się na oczekiwanym poziomie, pomiędzy 5.2 a 5.6. Alkaliczność oraz ilość wapnia jest powiązana ze sobą przez równanie rezydualnej alkaliczności RA. Rodzi się pytanie, czy nie da się tego wszystkiego jakoś powiązać? Otóż da się, za pomocą koloru piwa. Nie jest to żart. Im ciemniejszy kolor tym więcej kwasowości pochodzących ze słodu. Nie trzeba przeliczać proporcji słodów ciemnych/specjalnych/karmelowych. Wystarczy docelowy kolor piwa by zobaczyć jakiej alkaliczności rezydualnej potrzeba. Formuła która łączy to wszystko:
     
     
    SRM = 0.14 * RA (jako CaCO3) + 5.2
     
     
    Pełne złote a skromne, chyba że ciemne, ale też skromne. Kolor piwa powiązany jest z alkalicznością rezydualną, prawda że piękne?
     
    Przykład, aby lepiej zrozumieć. Załóżmy, że z wyliczeń, bez żadnych modyfikacji wody, wyszło RA  = -10 jako CaCO3. Podstawiasz do równania: SRM = 0.14 * -10 + 5.2 = 3.8. Około tego koloru mieszą się piwa pszeniczne, belgijskie, PA i IPA. Poszukaj w Internecie tabel, które wymieniają style piwa pogrupowane po SRM i zobacz jakie piwa możesz warzyć bez modyfikacji wody. Wcale bym się nie zdziwił, że są to piwa, które Ci smakują i zawsze wychodzą najlepiej. W moim przypadku, gdzie RA mam wysokie, wchodzą w grę piwa o kolorze ciemny bursztyn oraz brązowe. Faktycznie, jak robiłem dunkelweizen oraz szkota, to pH trafiło w optimum.
    Żeby nie było za łatwo. Kolor piwa trudno ‘trafić’, do tego potrzeba trochę praktyki i doświadczenia. Nawet jeśli kalkulator podał konkretną wartość, nie zawsze taki kolor wyjdzie. Są różne słodownie, różne partie słodu. Słody ciemne mają szeroki zakres widełek koloru podawanego przez producenta. Dlatego nie męcz się z trafieniem koloru w punkt, zawsze możesz dokonać małej korekty kwasem. Przy małej odchyłce uzyskanego koloru od zamierzonego i tak najczęściej trafisz w optymalny przedział pH.
     
    Wartość RA łatwo wyznaczyć posługując się nomogramem zaproponowanym przez Johna Palmera w Książce How To Brew [3]. Zamiast liczyć, można rysować. Nomogram również pomoże w doborze koloru piwa i modyfikacji wody pod konkretny kolor.
     
    Bezpośredni link do nomogramu (PDF). Drukuj bez dostosowania lub w skali, bo inaczej może nie wyjść. Wygląda to tak:
     

     
    Kilka słów wyjaśnień. Wszystkie wartości, które otrzymasz musisz przeliczyć na odpowiednik CaCO3 (wyjątek alkaliczność, która może być jako HCO3). Kolorem jasno niebieskim są oznaczone widełki, jakie woda przeznaczona do warzenia powinna mieć. Są to wartości zalecane, nie obligatoryjne. Przykładowo historyczna woda pilzneńska wg literatury ma około 10 ppm wapnia i piwa jakoś wychodzą. Obecnie przy warzeniu pilsa dobre browary biorą poprawkę ze względu na jakość współczesnych słodów.
    Pokaże na przykładzie: Raport wody w jednostkach przeliczonych na ppm jako CaCO3 wygląda tak: wapń: 70, magnez: 15, całkowita alkaliczność: 48.
    Oznaczam wapń, magnez oraz alkaliczności na odpowiednich osiach nomogramu. Następnie rysuję linię od punktu wapnia do magnezu. Linia ta przetnie linię efektywnej twardości wody, punkt przecięcia uwzględnia już wpływ wapnia i magnezu. Rysuję kolejną linię od punktu przecięcia poprzez punk całkowitej alkaliczności. W efekcie przeciąłem linię RA i tym samym wyznaczyłem jej wartość. Na górze ponad wartością masz orientacyjne kolory piwa, które pasują do RA. Tak wygląda to w praktyce:
     

     
    Linia niebieska przecina wartość magnezu oraz wapnia odczytane z raportu wody, lub zmierzone testami. Prowadzę linię zieloną od punktu przecięcia efektywnej twardości poprzez całkowitą alkaliczność aż do przecięcia osi RA. Spoglądam w górę nad punktem i widzę, że optymalnie będzie jasne piwa do delikatnie bursztynowych. Mogę też wartość RA podstawić do wzoru SRM i mieć konkretną wartość. Jeżeli zechcę uwarzyć piwo ciemniejsze, to mogę do wody dodać kredy. Wtedy wzrośnie mi alkaliczność wody oraz ilość wapnia. O ile? Cóż mogę to obliczyć (rozwiązanie dla nerdów), zmierzyć po fakcie (rozwiązanie dla hazardzistów). Wystartować od zera, czyli użyć wody destylowanej lub RO. Mogę też posłużyć się pomiarem przed dodaniem czegokolwiek a następnie kalkulatorem. Jeżeli masz dokładny raport wody, to może on zastąpić pomiar.
    Podsumowując, formuła: SRM = 0.14 * RA (jako CaCO3) + 5.2 łączy w sobie wiele procesów chemicznych zachodzących podczas warzenia z kolorem piwa. Jeżeli wyznaczysz alkaliczność rezydualną, to będziesz widział w jaki kolor piwa celować, by pH zacieru było bliskie optimum. Trudnością jest trafienie z kolorem, ale w tym pomaga praktyka oraz większość programów do układania receptur. Warzenie piwa w jednym kolorze, mimo że dobrego, szybko się znudzi. Czas zacząć modyfikować wodę, by warzyć dowolne piwo i trzymać pH zacieru w optimum.
     
    7. Modyfikacja wody
     
    Dostosowanie składu wody nie jest trudne. Podstawiasz dane w kalkulatorze i masz wyniki. Mówię jak najbardziej serio. Zachęcam do korzystania z kalkulatora online lub wbudowanego w Twój ulubiony program.
     
    Jeżeli jednak chcesz poznać, co znajduje się pod maską kalkulatorów, to zapraszam do dalszego czytania. Już wspominałem, że w naturze trudno jest spotkać wolne atomy. Raczej są to cząsteczki. Dodając je do wody dysocjują i rozpuszczają się. Do wody dodajemy sole mineralne aby podnieść poziomy wybranych jonów. Po dodaniu, nie można już ich usunąć w prosty sposób. Dlatego woda przygotowywana jest w dwóch etapach - mówię ciągle o piwowarstwie domowym. Na wstępie jest zmiękczana, spada twardość i alkaliczność do takiego poziomu, z którego za pomocą minerałów można zbudować pożądany profil. Żeby było trudniej, najczęściej wodę do zacierania traktuje się inaczej jak tą do wysładzania. Woda, którą będziesz wysładzał powinna być odpowiednio miękka, mało alkaliczna i najlepiej jakby potraktować ją kwasem aby obniżyć pH do poziomu około 5.5. Taki odczyn nie będzie płukał garbników. Jeżeli woda do wysładzania będzie mocno alkaliczna i będzie zawierała dużo wapna i miała wysokie pH, to nie dość, że wypłukasz sporo garbników, które powodują szorstkość odbioru piwa i ściąganie w ustach, to do piwa przedostanie się dużo wapnia. Ten może powodować mętność piwa, w skrajnych przypadkach gushing (tworzy małe kryształki ze szczawianami, super nukleatory pozwalające CO2 szybko przejść z postaci rozpuszczonej do lotnej). Dodatkowo bufor mocno alkalicznej wody będzie zapobiegał dalszemu spadkowi pH, to podnosi trochę ryzyko infekcji. Niższe pH jest środowiskiem mniej przyjaznym mikrobom.
     
    Wstępne przygotowanie wody
    Najłatwiej i najrozsądniej zacząć od zera, czyli użyć wody pozbawionej soli. Możesz taką kupić w sklepie jako wodę demineralizowaną lub zakupić system RO. Z tego podejścia korzysta Tibek. Używa małego systemu odwróconej osmozy RO3. Woda z takiego systemu jest porównywalna z destylowaną. Czysta woda, czy to z RO, czy też demineralizowana zakupiona w sklepie wymaga dodania wszystkich potrzebnych soli.
    Niewątpliwą zaletą tego podejścia jest start, od tego samego poziomu, czyli od zera. Nie martwisz się raportami wody. Jednakże nie ma róży bez kolców. Na wstępie trzeba trochę wydać. Zakup systemu RO, to wydatek przynajmniej 150 zł (z kosztami przesyłki, oraz potrzebnymi przyłączami). Potem dochodzi wymiana filtrów, raz na pół roku. Co kilka lat trzeba wymienić membranę. Jeżeli zamierzasz modyfikować wodę i warzysz 10 standardowych warek w roku, to po około 2 latach RO będzie bardziej opłacalne jak kupowanie najtańszej wody demineralizowanej. Oprócz aspektu finansowego jest również wygoda, a to przemawia za RO. Myślę, że jak zapytacie tibka to podpowie i doradzi co kupić.
     
    Dygresja: Jeżeli zdecydujesz się na zakup systemu RO (reverse osmosis, odwrócona osmoza) to zwracaj uwagę na współczynnik GPD. Zerknij tutaj aby dowiedzieć się więcej i policzyć czy Ci się to opłaca. Do celów piwowarskich wystarczy system RO3 75GPD. W zależności od ciśnienia w instalacji wodnej wytworzy około 3-4 litrów czystej wody na godzinę. Tanie systemy RO używają ciśnienia sieci wodnej do podtrzymywania zjawiska. Oznacza to, że na każdy wyprodukowany litr wody czystej zużyją kilka litrów wody, traktowanej jako odpad. Mimo tego koszt wyprodukowania wody przez system RO jest tańszy jak zakup w hipermarkecie.
     
    Drugim sposobem wstępnego przygotowania wody jest gotowanie. Gotowanie pozwala pozbyć się alkaliczności przemijającej. Wysoka temperatura redukuje ilość rozpuszczonego dwutlenku węgla. To zaburza równowagę układu węglanowego. Odczyn pH wody podnosi się a część węglanów strąca się jako osad sedymentując na dnie. Po przegotowaniu, wodę należy ostudzić i zdekantować, pozostawiając osad na dnie. Kosztem czasu i energii masz bardziej miękką wodę. Z tym podejściem wiąże się jeszcze jeden problem. Jak określić spadek twardości i alkaliczność? Możesz posiłkować się tabelą i próbować szacować.

     
    Z bardzo małej praktyki powiem Ci, że gotowanie wody jest uciążliwe. Trwa długo, trzeba potem delikatnie odbierać do kolejnego naczynia. Za to niewątpliwą zaletą jest bardzo szybkie pozbycie się chloru i jego lotnych związków podczas gotowania.
    Po przegotowaniu, zamiast szacować można również sprawdzić parametry. W tym celu najlepiej udać się do sklepu zoologicznego i kupić kropelkowe testy wody. Będziesz potrzebować dwóch. Pierwszy, to test KH-GH a drugi to Ca-Mg. Test KH mierzy twardość węglanową, test GH całkowitą. Test Ca wyznacza ilość wapnia, Mg magnezu. Testy te najczęściej podają wynik w stopniach niemieckich (°d). Trzeba je przeliczyć na mg/l jako CaCO3. Przeczylicznik jest prosty, wynik mnożysz przez 17.8.
    Testy kropelkowe działają na zasadzie liczenia kropli dodawanych do wody. Opiszę to na przykładzie testu KH. Woda, jak już wcześniej powiedziałem, to środowisko buforujące. Opiera się przed zmianą pH do momentu, aż bufor się przepełni. Dodając powoli kropelki testera zmniejszasz pojemność bufora. Liczysz kropla po kropli delikatnie mieszając. W pewnym momencie bufor się przepełni i ta ostatnia kropla zmieni kolor roztworu. Ilość dodanych kropli, to wynik w stopniach niemieckich. Załóżmy, że dodałem 5 kropli i woda się zabarwiła. Następnie mnożąc wynik przez 17.8 otrzymując wynik około 90. Jest to całkowita alkaliczność wyrażona w ppm jako CaCO3 (mg/l jako CaCO3).
    Testy kropelkowe w zależności od producenta i Twojej wody wystarczą na 10-20 pomiarów. Przy przechowywaniu ich w lodówce i ograniczeniu do kontrolnego pomiaru raz na kwartał wystarczą na kilka lat. Koszt zakupu obu, to około 65 zł. Zerknij tutaj aby zobaczyć jak wygląda używanie testów kropelkowych w praktyce.

     
    Dygresja: Raporty wody, które publikują stacje uzdatniania, są wykonywane zanim woda trafi do miejskiego wodociągu, a do kranu są jeszcze kilometry. Po drodze może zmienić swoje parametry. Testy kropelkowe najczęściej wskazują trochę większą wartość jeżeli chodzi o twardość i alkaliczność, tak samo jeśli chodzi o wapń. Woda płynie rurami pod większym ciśnieniem i potrafi jeszcze rozpuścić to co napotka po drodze. Im starsza instalacja, tym więcej soli i węglanów ma szansę dodatkowo się rozpuścić. To dobry powód, dla którego warto zakupić testy jeżeli nie masz systemu RO.
    Raporty wody również często pomijają alkaliczność wody, podając tylko całkowitą twardość. Rzadko jest wymieniony wapń i magnez jako oddzielna rubryka. Wtedy wypada zadzwonić albo napisać maila z prośbą o więcej danych. Możesz też próbować szacować, ale to już wybiega poza ramy tego artykułu.
     
    Trzecia możliwość, to rozcieńczenie. Ma tę przewagę nad gotowaniem, że jest o wiele szybsze i rozcieńcza wszystko w równych proporcjach. Minusem jest koszt, bo baniak 5 litrowej wody kosztuje około 3 zł. Ekonomiczność tego podejścia mocno zależy od Twojej wody. U mnie niestety czasem przy jasnych piwach muszę użyć kilku baniaków. W tej metodzie również przydadzą się testy kropelkowe, chyba że masz pełny raport wody. W swojej skromnej praktyce modyfikacji wody stosuję głównie tę metodę. W najbliższym czasie noszę się z zakupem taniego systemu RO3 głównie ze względu na wygodę.
     
    Powyższe metody nie są jedynymi. Są jeszcze inne techniki i narzędzia na zmiękczenie, zmniejszenie alkaliczności, zmianę proporcji minerałów. Przykładowo, możesz użyć wapna gaszonego, wymienników jonowych, natlenienia, nagazowania CO2 pod ciśnieniem. Chcesz dowiedzieć się więcej? sięgnij po [1].
     
    Masz już przygotowaną wodę. Wybrałeś sobie profil, chociażby w tym miejscu (CaCO3 = HCO3- * 0.82). Czas teraz poznać czym można tą wodę zmodyfikować.
     
    Kwasy
    Rozpocznę od modyfikacji, którą stosowałem jako pierwszą i przez bardzo długi czas. Jest to dostosowanie pH wody za pomocą kwasu. Do tego celu przydatny jest pomiar, do pomiaru służą paski, a jeszcze lepiej phmetr.
     
    Phmetr
    Początkowo wystarczały mi paski, które z czasem zamieniłem na tani phmetr. Wydatek około 35 zł z kosztami przesyłki i to w polskiej dystrybucji.
     

     
    W opakowaniu oprócz urządzenia są dwie saszetki z buforem służące do kalibracji. Rozrabiasz je w oddzielnych naczyniach wg instrukcji i zanurzasz sondę. Następnie powoli nastawiasz śrubę kalibrującą. W obu roztworach musi wskazywać wartość odpowiadającą pH odczytaną z opakowania. Rozrobione bufory możesz przechowywać w szczelnie zamkniętych słoikach kilka miesięcy. Potem trzeba je zmienić na nowe.
     
    Dygresja: W tanich modelach, takich jak ten ze zdjęcia producent podaje, że po pomiarze pH sondę wystarczy przepłukać w wodzie demineralizowanej, zamknąć urządzenie i odłożyć. W ten sposób zniszczyłem swój pierwszy phmetr po kilku miesiącach prawdopodobnie uszkadzając sondę. Teraz robię inaczej. Sondę po pomiarze przepłukuję wodą demineralizowaną i przechowuję w roztworze KCl, najczęściej źródła podają roztwór 3 molowy (~22,5g w 100 ml roztworu), inne roztwór 1 molowy (producent powinien to wyszczególnić w instrukcji). Ważne jest aby sonda była w roztworze takiego elektrolitu wtedy membrana w niej zawarta nie wysycha. W zatyczce urządzenia jest miejsce na około 2 ml roztworu, w ten sposób sonda jest stale zanurzona i nie wysycha. Raz na jakiś czas, niestety, trzeba wymienić roztwór w zatyczce, bo powoli odparowywuje zostawiając trochę soli jako nalot. Nalot rozpuszcza się w ciepłej wodzie. Po każdym użyciu urządzenia, wstrzykuję świeży roztwór do zatyczki. Pamiętaj, aby z płynem w zatyczce phmetr trzymać pionowo, inaczej płyn się wyleje. Tak przechowywane urządzenie dłużej trzyma kalibrację.
     
    Mój model ma napis ATC na obudowie, funkcja kompensacji temperatur, z kórej przy pierwszym podejściu korzystałem nie tak jak trzeba. Jeżeli chcesz aby urządzenie długo Ci służyło, to moja rada jest taka: zawsze należy mierzyć próbki schłodzone do temperatury pokojowej. Nie wciskaj też phmetru w zacier, szybko się uszkodzi, odbieraj rzadką część, schłódź próbkę i dopiero po tym dokonuj pomiaru. Współczynnik pH zależny jest od temperatury, mierząc go w gorącym zacierze dostaniesz przekłamany wynik. Jak mocno? odpowiedź na to pytanie znajdziesz w [1]. Przypominam, pierwszy pomiar zacieru wykonujesz po około 15 minutach. Sam pomiar jest prosty. Włączasz urządzenie. Zanurzasz sondę i czekasz kilka sekund, aż pomiar się ustabilizuje, odczytujesz wynik i na jego podstawie decydujesz co dalej.
     
    Zakwaszanie wody
     
    Zakwaszanie jest łatwe, tanie i skuteczne. W piwowarstwie domowym używa się najczęściej kwasu fosforowego V (ortofosforowego) lub mlekowego. Z zachowaniem zasad bezpieczeństwa - w końcu to stężone kwasy. Powoli dodajesz kwas, zacznij od ilości 1ml, dokładnie mieszasz aby się rozpuścił i dokonujesz pomiaru. Powtarzasz iteracyjnie do momentu uzyskania wyniku. Kwasu możesz dodawać zarówno do zacieru jak i do wody przeznaczonej na wysładzanie. Używam kwasu fosforowego 75%, dozuję go strzykawką. Jeżeli odpowiednio zmodyfikowałem wodę, to korekta brzeczki najczęściej nie jest potrzebna. W innym przypadku wszystko zależy od alkaliczności Twojej wody. Możesz zużyć nawet kilka mililitrów. W przypadku wody do wysładzania wszystko zależy od alkaliczności. Może to również być kilka mililitrów, ciągle mówię o standardowych 20 litrowych warkach. Zatem dodawaj po 0.5 - 1 ml, mieszaj i sprawdzaj wynik. Kwas mlekowy, jest kwasem silniejszym od fosforowego. Dodaje się go w mniejszych ilościach. Zaletą kwasu mlekowego jest to, że pozwala robić piwa zakwaszane. Po rozcieńczeniu jest przyjemny w smaku w porównaniu do fosforowego. Nie muszę chyba mówić, że te roztwory muszą być trzymane w bezpiecznym miejscu z dala od dzieci. Stężenia kwasów są podane wagowo a nie objętościowo. Więc 1 gram kwasu 75% nie jest tym samym co 1 ml. Kwas fosforowy jest gęstszy od mlekowego i oba są gęstsze od wody. Zatem objętość ich będzie mniejsza aniżeli waga.


     
    Jony, aniony, kationy, będą z tego związki
     
    Zapewne zauważyłeś, że wszystko co do tej pory napisałem powyżej ma wpływ na wydajność i komfort pracy enzymów. Jednakże modyfikacja wody to również i smak. Krótka charakterystyka części jonów (po więcej, sięgnij koniecznie do [1]):
    Wapń (Ca2+). Zalecany poziom 50 - 200 ppm. Palmer nazywa go przyjacielem piwowara. Główny jon reagujący z fosforanami ze słodu powodujący spadek pH. Stabilizuje pracę enzymów. Wspomaga koagulację białek, wytrącanie się osadu i szczawianów. Ma również wpływ na metabolizm drożdży. Jeżeli warzysz w kociołku automatycznym, pomyśl nad dodaniem wapnia w procesie gotowania. W przypadku systemu gdzie wysładza się wodą, to przedostanie się go wystarczająco dużo do kadzi warzelnej. W przypadku kociołków, gdzie jest ciągła cyrkulacja, poziom wapnia może (nie musi) być bardzo niski, co może skutkować mętniejszym piwem lub gorszą fermentacją. Wapno ma wysoki próg wyczuwalności, nie uzyskasz raczej takiego poziomu na wodzie z kranu. W przypadku bardzo dużych stężeń smakuje trochę jak woda mineralna. Magnez (Mg2+). Zalecany poziom 0 - 40 ppm. Podobnie jak wapń, ma wpływ na obniżenie pH zacieru. Drożdże potrzebują około 5 ppm magnezu, taka ilość jest zawarta w słodzie, stąd woda może go nie mieć zupełnie. Niektóre style piwa wymagają go trochę więcej, są to głównie piwa mocno chmielone. Od stężenia 125 ppm wykazuje właściwości przeczyszczające. Powyżej 40 ppm, może być odbierany jako nieprzyjemny kwaśno-gorzki smak. Sód (Na+). Najczęściej są to jony wprowadzone przez przydomowe zmiękczacze wody. Woda zmiękczona sodem nie jest najlepszym wyborem w piwowarstwie. W małych stężeniach, poniżej 150 ppm może podnosić odczucie pełni. Ale jeżeli w wodzie pojawi się duże stężenie chlorków to mamy NaCl, czyli sól kuchenną i smak słony. Palmer podaje, aby ilość sodu nie przekraczała 100 ppm. Siarczany (SO42-). Przykładowo siarczan wapnia CaSO4, czy magnezu MgSO4. Ich zwiększona ilość odpowiada za jakość goryczki, robiąc ją bardziej stanowczą i wytrawną. W przypadku zbyt dużej ilości siarczanów smak piwa może stać się lekko mineralny. W przypadku stężenia 200-400 ppm odpowiada za wydłużenie czasu kiedy odczujesz chmielowość. Palmer również podaje, że browary niemieckie jak i czeskie, unikają dużych stężeń siarczanów, bo rujnują smak szlachetnych chmieli kontynentalnych. Chlorki (Cl-). W przypadku wody, są to związki metali z chlorem, przykładowo: chlorek wapnia CaCl2, chlorek cynku ZnCl. Lotne związki chloru powinny zostać z wody całkowicie usunięte. Albo w sposób chemiczny, albo poprzez odstanie przez kilka godzin, albo poprzez przygotowanie. Ilość chlorków nie powinna przekraczać 200 ppm. Odpowiadają za odczucie słodowości i pełni piwa. W dużych stężeniach mogą mieć negatywny wpływ na sprzęt, zwłaszcza wykonany ze stali nierdzewnej. Proporcja chlorków do siarczanów. Chlorki z siarczanami to duet smakowy. W teorii ważna jest ich proporcja. W praktyce czasem wychodzi inaczej. Aby poczuć w smaku wpływu tej proporcji, to ilość chlorków powinna być w zakresie 50 - 200 ppm, a siarczanów 50 - 500 ppm. W przypadku piw słodowych, siarczanów powinno być mało a chlorków kilka razy więcej. Piwa z umiarkowanym chmieleniem, dobrze sprawdzają się blisko równych proporcji. Jeżeli bardziej zależy Ci na wyciągnięciu chmielu, wtedy zwiększasz ilość siarczanów.  
    Dygresja: Proporcje i ich dobór wyjdzie z czasem i praktyką, nie czuję się kompetentny, by doradzać konkretne poziomy. Sam patrzę na tą proporcję trochę przez palce. Przykładowo, lubię nie do końca stylowe AIPA, gdzie przewaga chlorków nad siarczanami jest znaczna, przynajmniej 2:1. Zupełnie inaczej, jak podaje literatura i przykłady niektórych świetnych piw.
     
    W naturze bardzo rzadko występują wolne jony. Kationy wapnia Ca2+ i magnezu Mg2+ w naszym przypadku związane są z kationami czy to w postaci chlorków, siarczanów czy też węglanów. Natura tak chciała i nie ma dyskusji. Zatem modyfikując wodę będziesz dostawał zarówno kationy jak i aniony. A to wymaga już lekkich obliczeń, które wykona za Ciebie kalkulator. Nie będę tego powtarzał, ponieważ nasza wiki opisuje w bardzo dobry sposób modyfikację wody. Poniżej przedstawię najczęściej używane modyfikatory, nazwy będą potrzebne w jednym przykładzie przy użyciu kalkulatora.
    Gips piwowarski, siarczan wapnia (CaSO4 · 2H2O). Wprowadza wapń oraz siarczany. Często stosowany przy warzeniu piw chmielowych. Kupujemy go w postaci proszku, mimo tego jest uwodniony. Czyli w strukturze posiada cząsteczki wody. Oznacza to, że przy przeliczeniu proporcji również musisz tę wodę uwzględnić. Kalkulatory zakładają, że dodajesz właśnie taką postać gipsu. Są jeszcze odmiany bardziej uwodnione (wtedy nie powinny nazywać się gipsem, sklepy piszą różnie). W takim przypadku kalkulatory źle podadzą ilości. Zatem zwracaj uwagę aby kupić dwuwodny, czyli gips. Chlorek wapnia (CaCl2). Wprowadza wapń oraz chlorki. Stosowany jako modyfikator w stylach słodowych. Sól kuchenna, chlorek sodu (NaCl). Wprowadza jony sodu oraz chlorki. Stosowana relatywnie rzadko (chyba, że mówimy o specjalnych piwach jak gose). Jest dobrym wyborem, jeżeli masz nisko sodową wodę i chcesz podbić słodowość. Kreda, węglan wapnia (CaCO3). Wprowadza wapń i powoduje, że woda staje się alkaliczna. Węglan wapnia ma bardzo małą rozpuszczalność. Warto go dodać na  kilka godzin przed warzeniem, aby miał szansę lepiej się rozpuścić. Jego rozpuszczalność zwiększa dwutlenek węgla. Soda, wodorowęglan sodu (NaHCO3). Wprowadza sód i trochę alkaliczności. Stosowana raczej rzadko. Chlorek magnezu (MgCl2 · 6H2O). Wprowadza magnez i chlorki. Jest dość rzadko stosowany, ponieważ ilość magnezu w wodzie powinna być niska. Sprzedawany najczęściej w postaci uwodnionej. Sól gorzka, zwana solą epsom. Siarczan magnezu, (MgSO4 · 7H2O). Jako, że w wodzie stężenie magnezu nie powinno przekraczać 40 ppm, to jest stosowana bardzo rzadko. Wprowadza siarczki i magnez. Jest sprzedawana w postaci siedmiowodnej. Znowu trzeba brać to pod uwagę w obliczeniach. Dodawana jest czasem do wytrawnych nowofalowych IPA.  
    Powyższe związki są tanie i bardzo trwałe pod warunkiem poprawnego przechowywania, czyli szczelnie zamknięte, bez wilgoci i w ciemnym miejscu. Jednakże miej na uwadze to, że jak sypiesz jedną łyżeczkę gipsu, to nie oznacza, że połowa tej łyżeczki to wapń a druga siarczany. Związki składają się z atomów, które mają różne wagi. Aby policzyć ile wagowo znajduje się konkretnego jonu trzeba sięgnąć do tablicy okresowej pierwiastków. Wzór rozkładasz na atomy i przypisujesz im wagę. W gipsie dwuwodnym zawarte są:
    Ca ~ 40u,
    S ~ 32u,
    O ~ 16u,
    H ~ 1u.
     
    Jednostka ‘u’ jest do pominięcia, ważna jest relatywna różnica w wadze, to pozwoli wyliczyć procentowy udział. Wiem, że jesteś ciekawy u = 1,66 * 10-24 g.
     
    Przykład: na łyżeczce jest 3 gramy gipsu. Zapis chemiczny wygląda tak: CaSO4 · 2H2O. Ważna uwaga, musi to być prawidłowy zapis stechiometryczny.
    Woda to: 2 atomy wodoru (H), jeden tlenu (O). Obliczenia: 2 * 1u + 16u = 18u.
    Siarczan wapnia to: 1 atom wapnia (Ca), 1 siarki (S), 4 tlenu (O). Obliczenia: 40u + 32u + 4 * 16u = 136u. 
    Dwuwodna cząsteczka gipsu łącznie waży: 136u +  2 * 18 u = 172u.
    Wagowo woda stanowi około 21% (36/172 * 100%), zatem waży 3g * 0,21 = 0,63g.
    W nabranych 3 gramach gipsu jest 3g - 0.63g = 2.37g czystego siarczanu wapnia.
    Siarczan (SO4) waży 32u + 4*16u = 96u.
    Procentowo stanowi: 96/172 * 100% = 56%.
    Zatem siarczanów jest 2.37g * 0,56 ~= 1.33g.
    Wapnia w takim razie jest 2.37g - 1.33g ~= 1g.
    Ile to będzie mg/l czy też ppm? Aby to obliczyć bierzesz poszczególne wagi i dzielisz przez objętość wody. Morał z tego taki, że siarczan wapnia wagowo bardziej podnosi siarczany niż wapń. Tak właśnie wyglądają obliczenia kalkulatorów wody. Czas przyjrzeć się jednemu, a konkretnie kalkulatorowi od Brewers Friends. Zapoznaj się również z metodologią zamieszczoną pod rubrykami kalkulatora. Dowiesz się jak architekci podeszli do tematu i na czym bazowali.
     
    Kolejny przykład, tak będzie najprościej. Warzę dry stout. Celuję w około 19 litrów idealnie, aby przelać potem do kega typu cornelius. Drożdże wybiorę silnie flokulujące, mało chmielu, więc strat będzie niewiele. Użyję 4 kilogramów słodu, słód mi uwięzi około 4 litrów wody. Następnie gotowanie, odparuje około 4 litrów. Mało chmielu, więc 3 litry to będą straty. Ostatecznie potrzebuję 19 + 4 + 4 + 3 = 30 litrów wody. Będę zacierał w proporcji 4:1, więc do kotła warzelnego idzie 16 litrów wody, reszta czyli 14 litrów do wysładzania.
    Kalkulator pozwala mi zacząć od pełnego raportu wody lub od najprostszego, bazującego tylko na twardości ogólnej, alkaliczności oraz pH. Te trzy parametry wystarczą aby oszacować ile i jakich jonów jest w wodzie pitnej, bo stężenia określonych grup jonów wykazują właściwości korelacyjne (kolejny raz zapraszam aby sięgnąć do [1] lub [2]). Mój raport wody nie zawiera nic o alkaliczności, zatem kupiłem w sklepie zoologicznym test KH-GH. Wyszło mi, już po przeliczeniu na ppm jako CaCO3, że twardość całkowita GH wynosi około 370 ppm jako CaCO3, a alkaliczność KH 230 ppm jako CaCO3
     
    Wybór stylu piwa nie był przypadkowy. Mam wodę alkaliczną i twardą. Dobra do piw raczej ciemniejszych, będzie mniej pracy. Jako profil docelowy wybrałem Dublin (Dry Stout). Korzystam z uproszczonego podejścia, nie będę przejmował się wszystkimi parametrami. Najważniejsze będzie osiągnięcie odpowiedniego poziomu alkaliczności oraz wapnia.
    Wodę do wysładzania będę rozcieńczał wodą demineralizowaną, więc tak naprawdę będą dwa źródła wody. Woda do warzenia - prosto z kranu. Pozwolę jej odstać noc aby pozbyć się lotnego chloru. Woda do wysładzania będzie rozcieńczona, więc ma inne parametry. Użyję 10 litrów wody demineralizowanej a brakującą część dopełnię kranówką. Chcę uzyskać wodę miękką, mało alkaliczną. Zatem rozcieńczenie wynosi około 70%. O tyle samo spadnie twardość i alkaliczność rozcieńczonej wody z kranu. Wartości wody do wysładzania to: GH = 110, KH = 70.
    Mam już wszystko. Profil wody możesz znaleźć pod tym linkiem. Lub używając kodu: JBBLGXV.
     
    Krok po kroku, jak wyglądał proces obliczeń w celu dostosowania wody.

    Przestawiłem się na jednostki z układu SI. Wyszło mi, że potrzebuję 30 litrów wody. Woda do zacierania 16 litrów, do wysładzania 14 litrów. Będę używał innej wody w obu procesach.
     

    Nie dysponowałem pełnym raportem. Ograniczyłem się do do pomiaru testem kropelkowym. Przeliczyłem ze stopni niemieckich na ppm jako CaCO3. Z pomiaru pH = 7.3.

    Warzę stouta, więc wybieram profil odpowiedni do stylu. Wybór uzupełnił mi wartości docelowe. Zamiast konkretnego wyboru możesz tam wpisać własne wartości, w które celujesz. Teraz cała trudność, trzeba tak dobrać sole i węglany, aby trafić jak najbliżej wartości docelowej. Delta powinna być jak najbliżej 0. Wartości zielone oznaczają, że jest dobrze. Tak jak mówiłem wcześniej: wartości magnezu oraz siarczanów są wyliczone w sposób przybliżony. Nie przejmuję się nimi. Wartość siarczanów odbiega do 53, jest na progu wyczuwalności. Nie chciałem rozcieńczać wody do zacierania, więc godzę się na lekkie odchylenie. Z wapnem i alkalicznością trafiłem tak jak trzeba. Wybrałem kredę do modyfikacji, bo zawiera oba jony, których mi brakuje. Kredy wyszło: 6.5 g. Wodę warto przygotować dzień przed warzeniem i kredę w niej rozpuścić, co jakiś czas mieszając, niestety podobnie jak węglan wapnia nie rozpuszcza się natychmiast. Brakowało trochę chlorków i sodu. Jony te zawiera sól kuchenna. Wystarczył 1 gram soli. Woda do warzenia gotowa. Czas na wysładzanie.

    Woda była rozcieńczona. Wpisałem wartości, które obliczyłem wcześniej.

     

    Woda miała za duże pH więc użyłem kwasu fosforowego V by ją zakwasić. Mam kwas 75%, więc taki ustawiłem. Kalkulator mi podpowiedział ile go potrzeba, przepisałem tę wartość. Docelowa była ustawiona na 5.4, nie ruszałem. Zaznaczyłem opcję, aby kalkulator uwzględnił powyższe wartości. Nic tylko warzyć.
     
    Jeżeli będziesz zaczynał od wody RO, to w uproszczonym raporcie wpisujesz wartość 0 dla KH i GH. Woda demineralizowana i RO nie będzie miała pH równego 7. Dlatego, że jest w niej trochę rozpuszczonego CO2, co za tym idzie będzie tam kwas węglowy. Zatem pH będzie poniżej 7. Jest to powód, dla którego woda demineralizowana nie nadaje się do kalibracji phmetrów.
     
    Zakończenie
     
    Jeżeli dotrwałeś do tego momentu i jeszcze nie śpisz, to jestem pełen podziwu. Dowiedziałeś się podstaw dotyczących wody w piwowarstwie domowym. Głównie w aspekcie wydajności. Chociaż też pojawiło się kilka zdań o wpływie składu wody na smak. Warto abyś teraz sięgnął po pozycję [1] i zobaczył, że temat ten jest trochę szerszy. Z pozycji [1] również dowiesz się, jak przygotowują i modyfikują wodę duzi gracze. Dlaczego wymienniki jonowe stosowane przez koncerny nie są takie złe. Co daje napowietrzanie wody, a co przepuszczanie dwutlenku węgla pod wysokim ciśnieniem. Jak działają bufory słodów i wiele innych ciekawych informacji.
    Mam cichą nadzieję, że powyższy artykuł przyczyni się do podniesienia wydajności w Twoim domowym browarze. Zużyjesz mniej energii i słodu. Będziesz nosił mniejsze ciężary a Twoje piwo stanie się jeszcze lepsze. Sam proces modyfikacji nie jest skomplikowany, zwłaszcza że wiesz już co w tej wodzie się dzieje.
    Dziękuję serdecznie recenzentom. Proszę kierujcie trudne pytania właśnie do nich ;). Dziękuję również Tobie, za poświęcony czas i do zobaczenia w następnym artykule.
     
     
     
    Na prośbę forumowiczów zamieszczam dodatkowo dokument w formacie PDF z powyższym artykułem. Możesz go pobrać tutaj: O wodzie w browarze domowym, bez lania wody .pdf.
     
     
     
    Możesz być zainteresowany również:
    Bank drożdży piwowarskich w domowych warunkach Odzyskiwanie drożdży z piwa niepasteryzowanego Skuteczność popularnych środków dezynfekujących na brettanomyces StarSan, tani i skuteczny środek dezynfekujący Wyjaśnienie jak działają enzymy podczas zacierania Cukier kandyzowany domowej produkcji Kilka słów o namnażaniu drożdży w starterze Jak długo przechowywać gęstwę Rehydracja drożdży suchych, temperatura ma znaczenie Prosty sposób na tanie i szybkie chłodzenie brzeczki latem Nie samym piwem człowiek żyje, czyli chmielona woda na upalne dni Zrób to sam, czyli jak wykonać mieszadło magnetyczne posiadając dwie lewe ręce  
    Jeżeli zauważyłeś błąd to proszę zgłoś go jako prywatną wiadomość, by nie robić off-topu w komentarzach. Poprawię z adnotacją. Jeżeli błąd wymaga dyskusji, oczywiście komentuj.
  20. Super!
    DanielN otrzymał(a) reputację od tmk1 w [WODA] Profile, modyfikacje, odwrócona osmoza itp.   
    @tmk1 samo pH wody to za mało, by można było wyliczyć potrzebną ilość kwasu. Musisz znać alkaliczność swojej wody (od biedy jej twardość i zrobić pewne założenia). Skoro użyłeś kalkulatora, na który się powołałeś to musiałeś, któreś z powyższych wartości wprowadzić. Więc powinno się wszystko zgadzać. Taka ilość kwasu jak Ci wyszła z kalkulatora odpowiada wodzie dość alkalicznej (dużo węglanów/wodorowęglanów)
     
    Możesz też łatwo sprawdzić czy wynik jest poprawny. Po prostu dodaj taką ilość kwasu jaka Ci wyszła do wody. Wymieszaj, poczekaj 10 minut by przereagowało i sprawdź paskiem do pomiaru pH czy się zgadza. Jeżeli będzie za kwaśno to dolej wody. Jak za alkalicznie, co do docelowego wyniku, do dodaj trochę kwasu. Serio nie musisz trafić w punkt, paski są do tego celu w zupełności wystarczające.
     
    Jest też bardzo prosty sposób, by ustalić pH wody do wymaganego poziomu, coś w rodzaju miareczkowania. Do wiadra wlej 10 litrów wody, by potem mieć łatwe odniesienie i przeliczenia. Dodajesz po jednym mililitrze kwasu, dokładnie mieszasz i po 10-15 minutach (czas jest potrzebny, by w znacznej większości przereagowało) sprawdzasz paskiem pH. Powtarzasz powyższe, aż trafisz w docelowe pH. Sumujesz ilość kwasu i zapisujesz ten wynik. Jeżeli masz, te same źródło wody, to ta ilość kwasu będzie Ci towarzyszyła przy Twoich warkach przez długi czas. Potem tylko skalujesz w zależności od ilości docelowej wody.
     
    Jeżeli wiesz, że masz wodę twardą to możesz od razu zacząć od 3-4 ml kwasu, by szybciej uzyskać wynik. Przy zbliżaniu się do wartości, zamiast 1 ml dodajesz 0.5 ml, by nie przestrzelić. By dokładnie odmierzać ilość kwasu w aptece kup strzykawkę 2 ml, strzykawki z PP są odporne na kwas mlekowy i ortofosforowy.
     
    Tutaj mała uwaga, jeżeli Twoje ujęcie wody, to studnia głębinowa, to parametry wody mało się zmieniają w przeciągu roku. Jednakże jeżeli woda pitna pochodzi z wód gruntowych (np. ujęcie w rzekach), wtedy możesz mieć większe zmiany parametrów (przykładowo spowodowane przez wiosenne roztopy), które mogą już w lekki sposób wpływać na ilość kwasu do korekty (będą to raczej nieznaczne ilości). Nie ma też z tym biedy, możesz zmierzyć raz na jakiś czas paskiem i delikatnie skorygować (dolewając w zależności od potrzeby wody lub kwasu).
     
    Jak znajdziesz czas zerknij na ten wpis, powinien Ci pomóc ze zrozumieniem tematu w wody w naszym hobby.
     
  21. Dzięki!
    DanielN przyznał(a) reputację dla anteks w Dla poczatkujacych - czuję się całkowicie zagubiony   
    by nie było cofki warto zainstalować zaworek

  22. Super!
    DanielN otrzymał(a) reputację od Bachi w Dla poczatkujacych - czuję się całkowicie zagubiony   
    To jest trochę bardziej skomplikowane. Jeżeli wysyciłeś piwo do określonej wartości. Powiedzmy reduktor był ustawiony na 1 bar i wysycałeś wszystko w temperaturze powiedzmy 10 stopni. Jeżeli proces trwał odpowiednio długo to piwo się wysyci i w tych warunkach nie przyjmie więcej dwutlenku węgla. Tutaj należy wspomnieć o prawie Henryego. 
    Rozpuszczalność CO2 w piwie to powolny proces, w kegu trwa to kilka dni. Podajesz przez reduktor ciśnienie, szybko zapełnia się przestrzeń nad lustrem piwa. Po kilkudziesięciu minutach cześć gazu rozpuszcza się. Gaz będzie powoli się sączył przez reduktor wyrównując ciśnienie w przestrzeni nad powiem. Dokładnie w takiej prędkości jak rozpuszcza się gaz w piwie. Po kilku dniach (bo jest mała powierzchnia wymiany) osiągnie stan równowagi (przy założeniu, że nie zmieniła się temperatura ani ciśnienie). 
     
    Po osiągnięciu równowagi więcej gazu się nie rozpuszcza. Można odłączyć gaz do chwili wyszynku.

    Zmieńmy warunki dla tak w pełni nagazowanego piwa. Odłączam gaz i przenoszę keg do chłodniejszego miejsca. Ilość gazu się nie zmienia (zakładam, że piwo w pełni przefermentowało i drożdże już nic nie produkują), bo to układ zamknięty. Wraz z obniżeniem temperatur, z prawa Henry’ego, rozpuszczalność gazu w piwie wzrasta. Zatem cześć dwutlenku węgla z przestrzeni nad piwem rozpuści się aż osiągnie równowagę. Powiedzmy wcześniej planowałeś wyseplenicie 2 vol, to teraz będziesz miał piwo wysycone nieco bardziej. Jednakże niewiele więcej (tutaj zakładam, że keg był prawie pełny, więc mało przestrzeni nad piwem, a zatem i mniej gazu). To oczywiście wymaga czasu, bo rozpuszczalność jest procesem powolnym w takich warunkach.

    Drugi przypadek, ten sam keg. Przenosisz piwo do cieplejszego miejsca, powiedzmy do 25°C (podaję tak wysoką bo miałem pod ręką tabelę z wartościami). Rozpuszczalność gazu w cieczy maleje. Tym samym CO2 powoli będzie przechodził do przestrzeni nad piwem. Po kilku dniach wysycenie piwa spadnie do około 1.5 v/v. Po podłączeniu tego kega okaże się że zacznie Ci bardzo szybko lać (ciśnienie nad lustrem piwa będzie chciało jak najszybciej się wyrównać do nowych warunków). Ten przypadek pokazuje czemu jest trudno nasycić i potem rozlewać piwo w wysokiej temperaturze. Jakbyś chciał w warunkach letnich piwo o temperaturze 25°C nasycić do 2 v/v to musiałbyś podać ciśnienie na reduktorze około 1.6-1.7 bara. Takie, trochę przerysowane, warunki muszą brać pod uwagę osoby używające schładziarek. Wtedy też najczęściej na czas wyszynku odpuszcza się trochę ciśnienia zaworkiem bezpieczeństwa by było łatwiej polewać.

    Ogólnie wyszynk jest łatwiejszy w niższych temperaturach, dlatego wiele osób decyduje się na kegerator, bo ten zapewnia stałe warunki (i pewnie też temu, że jest trochę tańszy na starcie ).

    Korzystając z powyższego, można bardzo przyśpieszyć wysycenie piwa. Obniżyć jego temperaturę, podać wysokie ciśnienie (powiedzmy 3 bary, czyli 1,5 bara poniżej zaworka bezpieczeństwa) i trząchać/turlać kegiem, po to by je spienić. Wtedy piwo się pieni, powierzchnia wymiany się bardzo zwiększa i w efekcie piwo wysyca się dużo szybciej. Wystarczy kilka-kilkanaście minut masz wysycony cały keg. Ma to tez swoje minusy, bo osady które są w piwie nie zdążą osiąść (chyba, że warzysz same hazy ). Jeżeli robisz tak przy podłączonej linii, to niemal cały czas będziesz słyszał syczenie sączącego się gazu do kega. Ten sposób wymaga kilku prób, by przestać w odpowiednim momencie, bo można przesycić.

    Jeżeli znajdziesz czas to zerknij na poniższy wpis. Czas leci to było ponad dwa lata temu.
     
     
     
  23. Super!
    DanielN przyznał(a) reputację dla anmar w W drugim tygodniu po zabutelkowaniu piwo się psuje   
    Czytając ten wątek zastanawiamy się: czy przez te 13 sezonów warzenia mamy aż tyle szczęścia, że nie spapraliśmy żadnej warki, czy też niektórzy uczestnicy tej dyskusji coś cudują.
    Każde piwo przelewamy do szklanego balonu na cichą, każde butelkujemy z fermentora z kranikiem, do każdego do refermentacji dodajemy cukier w postaci gorącego syropu. Nie przepłukujemy pojemników CO2, nie cudujemy z dodatkami np. z przeciw utleniaczami. Dajemy piwu czas od uwarzenia do butelkownia min. 6 tygodni. To jeśli chodzi o piwo. Natomiast przestrzegamy (może nawet przesadnie) czystości. Do mycia zarówno sprzętu jak i butelek używamy aktywnej piany (Dimer). Pomieszczenia do warzenia i fermentacji są regularnie sprzątane i myte. Od 4 sezonów do odkażania  używamy CLO2 doceniając wygodę stosowania. Poprzednio używane środki (pirosiarczan, aktywny tlen) były równie skuteczne. Wychodzimy z założenia, jeśli ludzkość warzyła piwo od 6k lat nie mając naszych możliwości i wiedzy i piwo było dobre to co my musimy robić źle, że zakładane są takie wątki. Warzmy świadomie, nie brońmy się przed wiedzą to jest skuteczny sposób otrzymania smacznego piwa.

  24. Dzięki!
    DanielN przyznał(a) reputację dla Daniel Kałuża w Style piwne wg Brewers Association   
    Cześć,
     
    Edycja 2021 dostępna do pobrania:
     
    https://www.piwo.org/files/file/71-style-piwne-wg-brewers-association-2021/
     
    Pozdrawiam
    Daniel
  25. Super!
    DanielN otrzymał(a) reputację od x1d w Dla poczatkujacych - czuję się całkowicie zagubiony   
    To jest trochę bardziej skomplikowane. Jeżeli wysyciłeś piwo do określonej wartości. Powiedzmy reduktor był ustawiony na 1 bar i wysycałeś wszystko w temperaturze powiedzmy 10 stopni. Jeżeli proces trwał odpowiednio długo to piwo się wysyci i w tych warunkach nie przyjmie więcej dwutlenku węgla. Tutaj należy wspomnieć o prawie Henryego. 
    Rozpuszczalność CO2 w piwie to powolny proces, w kegu trwa to kilka dni. Podajesz przez reduktor ciśnienie, szybko zapełnia się przestrzeń nad lustrem piwa. Po kilkudziesięciu minutach cześć gazu rozpuszcza się. Gaz będzie powoli się sączył przez reduktor wyrównując ciśnienie w przestrzeni nad powiem. Dokładnie w takiej prędkości jak rozpuszcza się gaz w piwie. Po kilku dniach (bo jest mała powierzchnia wymiany) osiągnie stan równowagi (przy założeniu, że nie zmieniła się temperatura ani ciśnienie). 
     
    Po osiągnięciu równowagi więcej gazu się nie rozpuszcza. Można odłączyć gaz do chwili wyszynku.

    Zmieńmy warunki dla tak w pełni nagazowanego piwa. Odłączam gaz i przenoszę keg do chłodniejszego miejsca. Ilość gazu się nie zmienia (zakładam, że piwo w pełni przefermentowało i drożdże już nic nie produkują), bo to układ zamknięty. Wraz z obniżeniem temperatur, z prawa Henry’ego, rozpuszczalność gazu w piwie wzrasta. Zatem cześć dwutlenku węgla z przestrzeni nad piwem rozpuści się aż osiągnie równowagę. Powiedzmy wcześniej planowałeś wyseplenicie 2 vol, to teraz będziesz miał piwo wysycone nieco bardziej. Jednakże niewiele więcej (tutaj zakładam, że keg był prawie pełny, więc mało przestrzeni nad piwem, a zatem i mniej gazu). To oczywiście wymaga czasu, bo rozpuszczalność jest procesem powolnym w takich warunkach.

    Drugi przypadek, ten sam keg. Przenosisz piwo do cieplejszego miejsca, powiedzmy do 25°C (podaję tak wysoką bo miałem pod ręką tabelę z wartościami). Rozpuszczalność gazu w cieczy maleje. Tym samym CO2 powoli będzie przechodził do przestrzeni nad piwem. Po kilku dniach wysycenie piwa spadnie do około 1.5 v/v. Po podłączeniu tego kega okaże się że zacznie Ci bardzo szybko lać (ciśnienie nad lustrem piwa będzie chciało jak najszybciej się wyrównać do nowych warunków). Ten przypadek pokazuje czemu jest trudno nasycić i potem rozlewać piwo w wysokiej temperaturze. Jakbyś chciał w warunkach letnich piwo o temperaturze 25°C nasycić do 2 v/v to musiałbyś podać ciśnienie na reduktorze około 1.6-1.7 bara. Takie, trochę przerysowane, warunki muszą brać pod uwagę osoby używające schładziarek. Wtedy też najczęściej na czas wyszynku odpuszcza się trochę ciśnienia zaworkiem bezpieczeństwa by było łatwiej polewać.

    Ogólnie wyszynk jest łatwiejszy w niższych temperaturach, dlatego wiele osób decyduje się na kegerator, bo ten zapewnia stałe warunki (i pewnie też temu, że jest trochę tańszy na starcie ).

    Korzystając z powyższego, można bardzo przyśpieszyć wysycenie piwa. Obniżyć jego temperaturę, podać wysokie ciśnienie (powiedzmy 3 bary, czyli 1,5 bara poniżej zaworka bezpieczeństwa) i trząchać/turlać kegiem, po to by je spienić. Wtedy piwo się pieni, powierzchnia wymiany się bardzo zwiększa i w efekcie piwo wysyca się dużo szybciej. Wystarczy kilka-kilkanaście minut masz wysycony cały keg. Ma to tez swoje minusy, bo osady które są w piwie nie zdążą osiąść (chyba, że warzysz same hazy ). Jeżeli robisz tak przy podłączonej linii, to niemal cały czas będziesz słyszał syczenie sączącego się gazu do kega. Ten sposób wymaga kilku prób, by przestać w odpowiednim momencie, bo można przesycić.

    Jeżeli znajdziesz czas to zerknij na poniższy wpis. Czas leci to było ponad dwa lata temu.
     
     
     
×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Umieściliśmy na Twoim urządzeniu pliki cookie, aby pomóc Ci usprawnić przeglądanie strony. Możesz dostosować ustawienia plików cookie, w przeciwnym wypadku zakładamy, że wyrażasz na to zgodę.